摘要
本文讨论了循环图Adam同构类的计数问题。对于循环图类1) n=素数幂,(n,2)={C_(a_1,a_2)|(a_1,a_2,)=1};ii)任意正整数n,(n,2)={C_(a_1,a_2)|(a_1,n)=1};iii)p>q,p,q是素数(p,q)={C_p(a_1,a_2,…,a_q)|1≤a_i≤p-1}分别给出了它们同构类的计数公式。
The problem of calculating the number of Adam isomorphic classes of circulant is discussed in this paper. Here we obtained the formulae of enumeration of the following isomorphic classes of circu lants:i) (n, 2)={C.(a_1,a_2,)|(a_1,a_2,n)=1;a_1,a_2≠0且a_1≠a_2} where n is prime power. ii) (n,2)={C_n(a_1,a_2)|(a_1,n)=1;a_1,a_2且≠a_1≠a_2},iii) (p,q)={C,a_n,a_2,…,a_q)|≤a_i≤p-1,a_i≠0 i=1,2,…q),where p,q is prine and q<p.
出处
《新疆大学学报(自然科学版)》
CAS
1990年第4期5-10,共6页
Journal of Xinjiang University(Natural Science Edition)
关键词
循环图
Adám同构
计数
circulant
Adam isomorphic
enumeratiom