期刊文献+

基于GLR-NT的显著误差检测与数据协调 被引量:6

Gross Error Detection and Data Reconciliation Based on A GLR-NT Combined Method
下载PDF
导出
摘要 提出了一种广义似然比法(Generalized Likelihood Ratio,GLR)与节点检测法(NodalTest,NT)组合的显著误差检测和稳态数据协调方法。该方法充分发挥了GLR法和NT法的优点,采用逐次侦破、补偿校正的策略,避免了传统显著误差侦破方法中系数矩阵降秩问题,并且融入了测量变量的上、下限约束,最终实现显著误差的侦破、识别、处理和测量数据的协调。仿真结果显示:该方法对多显著误差特别是误差幅度较小或出现节点大显著误差相互抵消的情况具有较好的性能,优于单独的GLR法和NT-MT法。一个实例验证了该算法的有效性。 By combining generalized likelihood ratio and nodal test,this paper proposes a new method for gross error detection and data reconciliation,GLR-NT combining method.This method makes full use of the advantages of both generalized likelihood ratio and nodal test,and adopts a strategy of detecting and compensating in successive iteration.Thus,the decreasing problem of coefficient matrix rank in traditional method may be effectively avoided.Moreover,by integrating the constraint of bounds on measurement variables,the proposed method can achieve the identification and processing of gross errors,and the reconciliation of measurement data.The simulation results show that the proposed method is superior to both sole GLR method and NT-MT method,and can attain better performance for the system with more than one error,especially when the magnitude of gross error is smaller or several biased stream are counteracted at the same node.Finally,an actual example is provided to illustrate the effectiveness of the proposed method.
出处 《华东理工大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第4期502-508,共7页 Journal of East China University of Science and Technology
基金 国家"863"项目(2009AA042141)
关键词 广义似然比法 节点检测法 显著误差检测 数据协调 generalized likelihood ratio nodal test gross error detection data reconciliation
  • 相关文献

参考文献4

二级参考文献31

  • 1杨友麒,滕荣波.过程工业测量数据中过失误差的侦破与校正[J].化工学报,1996,47(2):248-253. 被引量:13
  • 2Liebman M J, Edgar T F, Lasdon L S. Efficient data reconciliation and estimation for dynamic processes using nonlinear programming techniques. Computers and Chemical Engineering, 1992, 16(10-11): 963-986
  • 3Singhal A, Seborg D E. Dynamic data rectification using the expectation maximization algorithm. American Institute Chemical Engineers Journal, 2000, 46(8): 1556-1565
  • 4Haseltine E L, Rawlings J B. Critical evaluation of extended Kalman filtering and moving horizon estimation. Industrial and Engineering Chemistry Research, 2005, 44(8): 2451-2460
  • 5Vachhani P, Rengaswamy R, Gangwal V, Narasimhan S. Recursive estimation in constrained nonlinear dynamical systems. American Institute Chemical Engineers Journal, 2005, 51(3): 946-959
  • 6Vachhani P, Narasimhan S, Rengaswamy R. Robust and reliable estimation via unscented recursive nonlinear dynamic data reconciliation. Journal of Process Control, 2006, 16(10):1075-1086
  • 7Julier S, Uhlmann J, Durrant-Whyte H F. A new method for the nonlinear transformation of means and covariances in filters and estimators. IEEE Transactions on Automatic Control, 2000, 45(3): 477-482
  • 8Romanenko A, Castro J A A M. The unscented filter as an alternative to the EKF for nonlinear state estimation: a simulation case study. Computers and Chemical Engineering, 2004, 28(3): 347-355
  • 9Romanenko A, Santos L O, Afonso P A F N A. Unscented Kalman filtering of a simulated PH system. Industrial and Engineering Chemistry Research, 2004, 43(23): 7531-7538
  • 10Arulampalam S, Maskell S, Gordon N, Clapp T. A tutorial on particle filters for on-line non-linear/non-Gaussian Bayesian tracking. IEEE Transactions on Signal Processing, 2002, 50(2): 174-188

共引文献18

同被引文献31

引证文献6

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部