期刊文献+

结合历史全局最优与局部最优的粒子群算法 被引量:5

A Combine Historical Global and Local Best Particle Swarm Optimization Algorithm
下载PDF
导出
摘要 提出了一种增加粒子共享信息多样性的粒子群算法。该算法在粒子更新速度的过程中,将前几轮粒子搜索的历史全局最优信息与本轮局部最优粒子信息结合,增加粒子搜索信息的多样性。另外,根据2种信息的结合方式不同,将基本算法扩展成3种扩展型算法。6个典型函数的仿真实验结果说明,改进的粒子群算法可以有效地克服粒子群算法中的早熟现象。 A new particle swarm optimization algorithm was proposed to increase the diversity of the shared information.In the process of velocity updating,the historical global best in the previous rounds was combined with the local best in the current round to increase the diversity of information.In addition,according to the different combining ways of two kinds of information,the basic algorithm was extended to 3 kinds of extension algorithm.Simulation results on 6 typical functions showed that the improved particle swarm algorithm can efficiently overcome the premature of standard particle swarm algorithm.
出处 《华东理工大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第4期515-520,共6页 Journal of East China University of Science and Technology
基金 教育部人文社会科学研究青年基金项目(09yjc630151) 上海高校选拔培养优秀青年教师科研专项基金(sdju200903) 2011年上海市博士后科研资助计划项目(11R21420100) 上海市科委创新项目(11YZ268) 中国博士后科学基金面上资助项目(20110490729)
关键词 共享 多样性 历史全局最优 局部最优 早熟现象 shared diversity historical global best local best premature
  • 相关文献

参考文献15

  • 1林川,冯全源.基于微粒群本质特征的混沌微粒群优化算法[J].西南交通大学学报,2007,42(6):665-669. 被引量:11
  • 2Seo J H,,I m C H,Heo C G.Multi modal functionopti mization based on particle swarm opti mization. IEEETransactions on Magnetics . 2006
  • 3Franken N,Engelbrecht A P.Particle swarm opti mizationapproaches to co-evolve strategies for the iterated prisoner’’sdilemma. IEEE Transactions on EvolutionaryComputation . 2005
  • 4T. Sousa,A. Silva,A. Neves.Particle swarm based data miningalgorithms for classification tasks. Parallel Computing . 2004
  • 5B. Brandst?tter,U. Baumgartner.Particle swarm optimization—mass-spring system analogon. IEEE Transactions on Magnetics . 2002
  • 6Sousa T,Silva A,Neves A.A particle swarm data miner. Progress in Artifioial Intelligence . 2003
  • 7Kennedy J.The particle swarm: social adaptation of knowledge. Proceedings of 1997 IEEE International Conference on Evolutionary Computation . 1997
  • 8Kennedy J,Eberhart RC.Particle swarm optimization. Proceedings of IEEE International Conference on Neural Networks . 1995
  • 9Shi Y,Eberhart R C.A modified swarm optimizer. IEEE International Conference of Evolutionary Computation . 1998
  • 10Kennedy J,Eberhart RC.Particle swarm optimization. Proceedings of the IEEE International Conference on Neural Networks . 1995

二级参考文献9

  • 1孟红记,郑鹏,梅国晖,谢植.基于混沌序列的粒子群优化算法[J].控制与决策,2006,21(3):263-266. 被引量:76
  • 2费春国,韩正之.一种改进的混沌优化算法[J].控制理论与应用,2006,23(3):471-474. 被引量:16
  • 3JANSON S, MIDDENDORF M. A hierarchical particle swarm optimizer and its adaptive variant [ J ]. IEEE Trans. on Systems, Man, and Cybemetlcs - Part B :. Cybemectics, 2005, 35 (6) : 1 272-1 282.
  • 4KENNEDY J, EBERHART R C. Particle swarm optimization[ C ].Proceedings of the IEEE International Joint Conference on Neural Networks, Perth, 1995. Piscataway: IEEE Press, 1995:1 942-1 948.
  • 5KENNEDY J. Bare bones of particle swarms [ C ],Proceeding s of the IEEE Swarm Intelligence Symposium, Indianapolis, 2003. Piscataway: IEEE Press, 2003 : 80-87.
  • 6KENNEDY J. Probability and dynamics in the particle swarm[C].IEEE Congress on Evolutionary Computation, Portland, 2004. Piscataway: IEEE Press, 2004 : 340-347.
  • 7KENNEDY J. Why does it need velocity? [C].2005 IEEE Swarm Intelligence Symposium, Pasadena, 2005. Piscataway: IEEE Press, 2005: 38-44.
  • 8KENNEDY J. In search of the essential particle swarm [ C ].IEEE Congress on Evolutionary Computations, Vancouver, 2006. Piscataway: IEEE Press, 2006:1 694-1 701.
  • 9袁代林,陈虬.桁架结构拓扑优化的微粒群算法[J].西南交通大学学报,2007,42(1):94-98. 被引量:10

共引文献10

同被引文献40

  • 1李宁,邹彤,孙德宝.带时间窗车辆路径问题的粒子群算法[J].系统工程理论与实践,2004,24(4):130-135. 被引量:60
  • 2王存睿,段晓东,刘向东,周福才.改进的基本粒子群优化算法[J].计算机工程,2004,30(21):35-37. 被引量:43
  • 3Kennedy J,Eberhart R.Particle swarm optimization[C]//Proceedings of IEEE International Conference on Neural Networks.Portland:IEEE,2003.
  • 4Eberhart R,Kennedy J.A new optimizer using particle swarm theory[C]//Proceedings of the Sixth International Symposium on Micro Machine and Human Science.Nagoya:IEEE,1995.
  • 5Beekman M,Ratnieks F L W.Long-rang foraging by the honey-bee[J].Functional Ecology,2000,14(4):490-496.
  • 6Ghodrati A,Lotfi S.A hybrid CS/PSO algorithm for global optimization[J].Intelligent Information and Database Systems,2012,7198(2):89-98.
  • 7Liu Z H,Wang X L.A PSO-based algorithm for load balancing in virtual machines of cloud computing environment[J].Advances in Swarm Intelligence,2012,7331(4):142-147.
  • 8El-Sherbiny M M,Alhamali R M.A hybrid particle swarm algorithm with artificial immune learning for solving the fixed charge transportation problem[J].Computers & Industrial Engineering,2013,64(2):610-620.
  • 9Hamta N,FatemiGhomi S M T,Jolai F,et al.A hybrid PSO algorithm for a multi-objective assembly line balancing problem with flexible operation times,sequence-dependent setup times and learning effect[J].International Journal of Production Economics,2013,141(1):99-111.
  • 10Fan K,You W J,Li Y Y.An effective modified binary particle swarm optimization algorithm for multi-objective resource allocation problem[J].Applied Mathematics and Computation,2013,221(3):257-267.

引证文献5

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部