摘要
基于非线性约束的序列界无约束极小化方法,对大规模过程系统稳态优化的序列界约束极小化方法(SBCMM)进行了研究.对工程模型引进松弛变量处理后,SBCMM的罚函数仅包含等式约束的惩罚项,不包含界约束及不等式约束的惩罚项.原问题的解由求解一系列界约束极小化子问题而非无约束极小化子问题来获得.最后,用一类规模可变的非线性规划问题和一类最优控制问题对SBCMM进行了测试.数值结果表明,SBCMM可用于大规模过程系统优化求解,并且是稳定和有效的.
Based on sequential bound unconstrained minimization method of the nonlinear constraints,the sequential bound constrained minimization method(SBCMM) of steady-state optimization of large-scale process systems is studied.After applying relaxation variables to the engineering model,the penalty function of SBCMM only contains the penalty items about equality constraints but not the the ones about bound or inequality constraints.The solution of the original problem is obtained by solving a series of bound constrained minimization sub-problems but not by unconstrained minimization sub-problems.Finally,SBCMM is tested by a scale-variable nonlinear programming problem and an optimal control problem.The numerical results show that SBCMM is applicable to optimization solution of large-scale process systems and has the stability and effectiveness.
出处
《信息与控制》
CSCD
北大核心
2011年第4期514-517,524,共5页
Information and Control
基金
国家自然科学基金资助项目(60874070
30971698)
高等学校博士学科点专项科研基金资助项目(20070533131)
湖南科技学院科学研究基金重点资助项目(09XKYTA010)
关键词
稳态优化
非线性规划
大规模过程系统
数值试验
steady-state optimization
nonlinear programming
large-scale process system
numerical experiment