期刊文献+

六盘山主要植被类型的生物量及其分配 被引量:27

Biomass and Its Allocation of the Main Vegetation Types in Liupan Mountains
下载PDF
导出
摘要 2009年,在宁夏六盘山南部林区香水河小流域,调查研究了主要森林类型的生物量及其层次和器官分配。结果表明:不同森林的活体植被总生物量(t.hm-2)差别较大,依次为华山松(102.70)>桦木林(84.42)>山杨林(79.97)>华北落叶松人工林(58.37)>疏林(44.91),按各类森林面积加权平均为78.37,远高于灌丛(20.77)、草地(1.07)和草甸(2.29)。各类森林的枯落物现存量(t.hm-2)为:华北落叶松人工林(18.21)>华山松林(11.99)>桦木林(10.90)>山杨林(7.67)>疏林(7.06),也都远高于灌木林(3.13)、草甸(0.82)和草地(0.49)。森林生物量集中在乔木层(占91.04%),灌木层仅占8.09%,草本层更低至0.87%。森林生物量的器官分配比例:乔木层为树干(54.06%)>枝(21.04%)>根(16.92%)>皮(5.34%)>叶(2.65%);灌木层为枝干(62.68%)>根(30.55%)>叶(6.77%);草本层为地上茎叶(58.82%)>根(41.18%)。乔木层地上与地下生物量比值的平均值为4.49,几种阔叶林都在4.0左右,但华北落叶松林为6.41,华山松林为5.80,都远大于灌木林的2.82、草地的1.89及草甸的1.20。不同林分的生物量均随林龄和林冠郁闭度的增大而几乎线性增加,并随林分密度的增加而增大,但在密度超过900株.hm-2后生物量增速减缓并渐趋其最大值。 In 2009,the biomass and its allocation among vegetation layers and organs were invested for the main forest types in the small watershed of Xiangshuihe,which locates at the southern part of Liupan Mountains.The results showed that there was an obvious difference in the total living biomass among different forest types,which followed the order of Pinus armandii forest(102.70 t·hm-2) Birch forest(84.42 t·hm-2)Populus davidiana forest(79.97 t·hm-2)Larix principis-rupprechtii plantation(58.37 t·hm-2)open forest(44.91 t·hm-2).The area-weighted average of biomass of all forests investigated was 78.37 t·hm-2,which was much higher than that of shrubs(20.77 t·hm-2),grassland(1.07 t·hm-2) and meadow(2.29 t·hm-2).The order of litter biomass of each forest type was Larix principis-rupprechtii plantation(18.21 t·hm-2)Pinus armandii forest(11.99 t·hm-2)Birch forest(10.90 t·hm-2)Populus davidiana(7.67 t·hm-2)open forest(7.06 t·hm-2),all of them was also much higher than that of shrubs(3.13 t·hm-2),meadow(0.82 t·hm-2) and grassland(0.49 t·hm-2).Most of the biomass in forest ecosystems concentrated in the tree layer with a ratio of 91.04%,while the ratio amounted to only 8.09% for the shrub layer and even 0.87% for the herb layer.The organ allocation of biomass in forest ecosystems was trunk(54.06%)branch(21.04%)root(16.92%)bark(5.34%)leaf(2.65%) for the tree layer,while it was stem and branch(62.68%)root(30.55%)leaf(6.77%) for the shrubs layer,and over-ground shoot(58.32%)root(41.18%) for the herb layer.The averaged ratio of above-to underground biomass for the tree layer of all forest types investigated was 4.49,while it was around 4.0 for the broadleaf forest types,6.41 for the Larix principis-rupprechtii plantation and 5.80 for the Pinus armandii forest;all of those were higher than that of shrubs(2.82),grassland(1.89) and meadow(1.20).The forest biomass increased nearly linearly with increasing forest age and canopy density within the range of the investigation.The forest biomass also increased rapidly with increasing stand density before the density reaches a threshold of 900 trees·hm-2;thereafter the biomass increased more slowly and towards its maximum.The forest biomass in Liupan Mountains is higher compared with that in the similar regions,showing a good result of the forest protection in last decades.
出处 《林业科学研究》 CSCD 北大核心 2011年第4期443-452,共10页 Forest Research
基金 国家自然科学基金项目(41071023 40730631) 林业公益性行业科研专项(200904056 200904005 201104005-02) 中国林科院中央级公益性科研院所基本科研业务费专项资金项目课题(CAFYBB2010001-02) 德国DFG项目(SCHW1448/3-1) 国家林业局六盘山森林定位站和森林生态环境重点实验室联合资助
关键词 六盘山 植被类型 生物量 结构 器官 分配 Liupan Mountains vegetation biomass stand structure organ allocation
  • 相关文献

参考文献26

  • 1Brown S, Gillespie A, Lugo A. Biomass estimation methods for tropical forests with applications to forest inventory data [ J ]. Forest Science, 1989, 35(4) : 881 -902.
  • 2Brown S, Lugo A. Aboveground biomass estimates for tropical moist forests of the Brazilian Amazon [ J]. Intercieneia. Caracas, 1992, 17(1): 8-18.
  • 3Cairns M, Brown S, Hehner E, et al. Root biomass allocation in the world's upland forests [ J]. Oecologia, 1997, 111 ( 1 ) : 1 - 11.
  • 4Dong J, Kaufmann R, Myneni R, et al. Remote sensing estimates of boreal and temperate forest woody biomass: carbon pools, sources, and sinks [ J]. Remote Sensing of Environment, 2003,84(3) : 393 -410.
  • 5Gehring C, Park S, Denich M. Liana allometric biomass equations for Amazonian primary and secondary forest [ J ]. Forest Ecology and Management, 2004,195 ( 1 - 2) : 69 - 83.
  • 6Houghton R, Lawrence K, Hackler J, et al. The spatial distribution of forest biomass in the Brazilian Amazon: a comparison of estimates [J]. Global Change Biology, 2001, 7(7) : 731 -746.
  • 7Muller I, Schmid B, Weiner J. The effect of nutrient availability on biomass allocation patterns in 27 species of herbaceous plants [ J]. Perspectives in Plant Ecology, Evolution and Systematics, 2000, 3 (2) : 115 -127.
  • 8林开敏,洪伟,俞新妥,黄宝龙.杉木成熟林林下植物生物量及其取样技术研究[J].福建林学院学报,2001,21(1):28-31. 被引量:11
  • 9田大伦,项文化,闫文德.马尾松与湿地松人工林生物量动态及养分循环特征[J].生态学报,2004,24(10):2207-2210. 被引量:73
  • 10邹春静,卜军,徐文铎.长白松人工林群落生物量和生产力的研究[J].应用生态学报,1995,6(2):123-127. 被引量:40

二级参考文献222

共引文献1713

同被引文献524

引证文献27

二级引证文献209

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部