期刊文献+

求解对称特征值问题的块Chebyshev-Davidson方法

A BLOCK CHEBYSHEV-DAVIDSON METHOD FOR SOLVING SYMMETRIC EIGENPROBLEMS
原文传递
导出
摘要 块Davidson方法是求解大型对称矩阵特征值问题块Lanczos方法的预处理变形.为了加速块Davidson方法的收敛性,我们组合块Chebyshev迭代法和块Davidson方法,提出了求解大型对称矩阵若干极端特征值的块Chebyshev-Davidson方法,并将收缩技术应用到该方法中.数值结果表明,块Chebyshev-Davidson方法优于块Davidson方法和Chebyshev-Davidson方法. The block Davidson method is a preconditioned variant of the block Lanczos method for solving large symmetric eigenvalue problems. In order to accelerate the convergence of the block Davidson method, we combine the block Chebyshev iteration with the block Davidson method and present the block Chebyshev-Davidson method with deflation for computing the extreme eigenvalues of large sparse symmetric matrices. Numerical results show that the block Chebyshev-Davidson method is far superior to the block Davidson method and the Chebyshev-Davidson method.
作者 梁觊 戴华
出处 《数值计算与计算机应用》 CSCD 北大核心 2011年第3期209-219,共11页 Journal on Numerical Methods and Computer Applications
基金 中国科学院科学与工程计算国家重点实验室自主研究课题"大规模特征值问题的高效算法 理论与实现" 江苏省自然科学基金项目(BK2009364)的资助
关键词 对称矩阵 特征值 特征向量 Chebyshev加速 块Davidson方法 块Chebyshev—Davidson方法 symmetric matrix eigenvalue eigenvector, Chebyshev acceleration blockDavidson method block Chebyshev-Davidson method
  • 相关文献

参考文献19

  • 1Daniel J, Gragg W B, Kaufman L, Stewart G W. Reorthogonalization and stable algorithms for updating the Gram-Schmidt QR factorization[J]. Math. Comput., 1976, 30: 772-795.
  • 2Crouzeix M, Philippe B, Sadkane M. The Davidson method [J]. SIAM J. Sci. Comput., 1994, 15: 62-76.
  • 3McCombs J R, Stathopoulos A. Iterative validation of eigensolvers: A scheme for improving the reliability of Hermitian eigemvalue solvers[J]. SIAM J. Sci. Comput., 2006, 28: 2337-2358.
  • 4Zhou K, Saad Y. A Chebyshev-Davidson algorithm for large symmetric eigenproblems[J]. SIAM J. Matrix Anal. Appl., 2007, 29: 954-971.
  • 5Davidson E R. The iteration calculation of a few of the lowest eigenvalues and corresponding eigenvectors of large real symmetric matrices[J]. J. Comput. Phys., 1975, 17: 87-94.
  • 6Duff I S, Grimes R G, Lewis J G. Sparse matrix test problems[J]. ACM Trans. Math. Softw., 1989, 15: 1-14.
  • 7Saad Y. Chebyshev acceleration technique for solving nonsymmetric eiegnvalue problems[J]. Math. Comput., 1984, 42: 567-588.
  • 8Sadkane M, Sidje R B. Implementation of a variable block Davidson method with deflation for solving large sparse eigenproblems[J]. Numerical Algorithms, 1999, 20: 217-240.
  • 9Underwood R. An iterative block Lanczos method for the solution of large sparse symmetric eigenproblems[D]. Ph D Thesis, Stanford University, 1975.
  • 10Yamamoto Y, Ohtsubo H. Subspace iteration accelerated by using Chebyshev polynomials for eigenvalue problems with symmetric matrices[J]. Int. J. Numer. Methods Eng., 1976, 10: 935-944.

二级参考文献11

  • 1Prof. Dr. D. J. Evans.On preconditioned iterative methods for solving (A?λB)x=0[J].Computing.1984(2)
  • 2Evans D J.On preconditioned iterative methods for solving ( A ? λB ) x= 0[].Computing.1984
  • 3Cao,Z. Eigenvalue problems . 1980
  • 4Huang Lin.Some perturbation problem for the generalized eigenvalues[].J of Peking University (Natural Science).1978
  • 5Chatelin,Fran?oise. Eigenvalues of Matrices . 1993
  • 6P. Concus,G.H. Golub,G. Meurant.Block preconditioning for the conjugate gradient method[].SIAM Journal on Scientific and Statistical Computing.1985
  • 7Evans D J,Shanehchi J.Preconditioned iterative methods for the large sparse symmetric eigenvalue problem[].Comput Meth Appl Mech And Eng.1982
  • 8Gantmacher F R.The Theory of Matrices[]..1959
  • 9Golub,G. H.,Underwood,R.,Rice,J.The block Lanczos method for computing eigenvalues[].Mathematical Software III.1977
  • 10C.Lanczos.An Interative Method for the Solution of the Eigenvalue Problem of Linear Diferential and Integral Operators[].J ResN at Bur Standards.1950

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部