期刊文献+

横观各向同性饱和两相介质动力反应计算分析

Calculation and Analysis on Dynamic Response of Transversely Isotropic Fluid-saturated Media
下载PDF
导出
摘要 针对横观各向同性饱和两相介质的弹性波动方程组,应用基于显式逐步积分计算格式的时域显式有限元方法对其在输入地震波作用下的动力反应进行计算和分析,并将计算结果与完全各向同性饱和两相介质的计算结果进行对比研究。结果显示横观各向同性饱和两相介质与完全各向同性饱和两相介质的动力反应具有较为显著的差异。同时表明时域显式有限元方法是进行横观各向同性饱和两相介质动力反应计算分析的一种有效方法。 The time-domain explicit finite element method that based of explicit step-by-step integral format is used to solve the elastic wave equations of transversely isotropic fluid-saturated media,and the elastic dynamic responses of the media under input earthquake wave are calculated and analyzed.The result is compared with one of completely isotropic saturated media also.The result shows that the dynamic response has significant difference between two kinds of media.The numerical calculation indicates that the time-domain explicit finite element method is effective for the calculation and analysis on dynamic response of transversely isotropic fluid-saturated media.
出处 《西北地震学报》 CSCD 北大核心 2011年第B08期115-118,共4页 Northwestern Seismological Journal
基金 国家重点基础研究发展计划"973计划"项目(2007CB714203)
关键词 横观各向同性 饱和两相介质 动力反应 时域显式有限元法 Transversely isotropic Fluid-saturated media Dynamic response Time-domain explicit finite element method.
  • 相关文献

参考文献14

  • 1Biot M A. Theory of propagation of elastic waves in a fluid-saturated porous solid[J]. Journal of the Acoustical Society of America, 1956,28: 168-191.
  • 2Garg S K. Wave Propagation Effects in a Fluid-Saturated Porous Solid [J]. Journal of Geophysical Research, 1971,76(32):7947-7962.
  • 3Zienkiewicz O C, Shiomi T. Dynamic behaviour of saturated porous media: The generalized Biot formulation and its numerical solution[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1984, 8(1): 71-96.
  • 4Simon B R, Wu J S S, Zienkiewicz O C. Evaluation of higher order, mixed and Hermitean finite element procedures for dynamic analysis of saturated porous media using one-dimensional models[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1986, 10(5): 483-499.
  • 5Prevost J H. Wave propagation in fluid-saturated porous media: an efficient finite element procedures[J]. Soil Dynamics and Earthquake Engineering, 1985, 4(4): 183-202.
  • 6赵成刚,王进廷,史培新,李伟华.流体饱和两相多孔介质动力反应分析的显式有限元法[J].岩土工程学报,2001,23(2):178-182. 被引量:40
  • 7Donlinguez J. Boundary Element Approach for Dynamic Poroelastic Problems[J], International Journal for Numerical Methods in Engineering, 1992,35:307-324.
  • 8Khalili N, Yazdchi M, Valllappan S.et al.. Wave propagation Analysis of Twp-Phase Saturated Porous Media Using Coupled Finite-infinite Element Method [J], Soil Dynamics and Earthquake Engineering, 1999,18:533-553.
  • 9张洪武,王鲲鹏,陈震.基于物质点方法饱和多孔介质动力学模拟(Ⅰ)--耦合物质点方法[J].岩土工程学报,2009,31(10):1505-1511. 被引量:13
  • 10张新明,刘克安,刘家琦.流体饱和多孔隙介质二维弹性波方程正演模拟的小波有限元法[J].地球物理学报,2005,48(5):1156-1166. 被引量:27

二级参考文献41

  • 1张新明,刘克安,刘家琦.流体饱和多孔隙介质二维弹性波方程正演模拟的小波有限元法[J].地球物理学报,2005,48(5):1156-1166. 被引量:27
  • 2王津龙,刘天云,张楚汉.堆石体柱状试件成型过程的材料点法仿真[J].清华大学学报(自然科学版),2005,45(12):1604-1607. 被引量:4
  • 3郑勇刚,顾元宪,陈震.薄膜破坏过程数值模拟的MPM方法[J].力学学报,2006,38(3):347-355. 被引量:5
  • 4Zienkiewica O C.有限元与近似法[M].北京:人民交通出版社,1989..
  • 5Zienkiewicz O C,有限元与近似法,1989年
  • 6Liao Z P,Soil Dyn Earthq Eng,1984年,3卷,4期,176页
  • 7Biot M A. Theory of propagation of elastic waves in a fluid-saturated porous solid: Low-frequency range. J. Acoust. Soc. Amer. , 1956,28:168 ~ 178
  • 8Biot M A. Theory of propagation of elastic waves in a fluid-saturated porous solid: Higher-frequency range. J. Acoust. Soc. Amer. ,1956, 28:179~ 191
  • 9Plona T J. Observation of a second Bulk compressional wave in porous media at ultrasonic frequences. Appl. Phys., 1980,36:259~ 261
  • 10AmosNur 许云译.双相介质中波的传播[M].北京:石油工业出版社,1986..

共引文献77

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部