期刊文献+

北京地区粘性土分类指标与力学指标关系回归分析 被引量:3

Regression Analysis on Relationship between Sort and Physical Indexes of Clay in Beijing Area
下载PDF
导出
摘要 通过统计北京地区7 602组粘性土土工试验数据,研究了粘土分类指标与力学指标各参数之间的相关关系,并给出了相应的一元、多元回归方程式和相关系数。分类指标回归分析结果表明:含水量与孔隙比、饱和度、液限和塑限指标相关性较好;液限与比重、孔隙比、塑限、塑性指数相关性较好;液性指数与饱和度、塑限与孔隙比、孔隙比与密度、饱和度与液性指数及塑性指数与比重相关性都较好。力学指标回归分析表明:压缩模量E2与E1相关性好;E2与E1、初始应力相关性好;E2与粘聚力、摩擦角、E1、初始应力、孔隙比相关性好;E2与E1、粘聚力、摩擦角相关性好。并不建议运用相关方程式确定指标,但对于资料欠缺的地区可以借鉴。 Based on the data of geotechnical engineering tests for 7 602 groups clay in Beijing,the correlativities among the sort indexes and physical indexes are studied,and the corresponding unitary-pluralistic regression equations and the relativity coefficients are given.Results of the sort index regression analysis show the follows:the correlativities among water content and void ratio,degree of saturation,liquid limit,plasticity index are relatively good.The correlativities among liquid limit and specific gravity,void ratio,plastic limit,plasticity index are relatively good.The correlativities between liquidity index and degree of saturation,between plastic limit and void ratio,between void ratio and density,between degree of saturation and liquidity index,between plasticity index and specific gravity,are relatively good.Results of the physical index regression analysis show the follows:The correlativity between two compressive modulus E1 and E2 is good. The correlativities among E2 and E1,original stress are good.The correlativities among E2 and cohesive force,inner friction, E1,void ratio are good.The correlativities among E2 and E1,cohesive force,inner friction are good.Concerning index through the correlative equations is not advised,but can used as reference in area in lack of data.
出处 《西北地震学报》 CSCD 北大核心 2011年第B08期166-170,共5页 Northwestern Seismological Journal
关键词 北京地区 粘性土 分类指标 力学指标 回归分析 相关系数 Beijing area Clay Sort index Physical index Regression analysis Correlativity coefficient
  • 相关文献

参考文献5

二级参考文献26

共引文献66

同被引文献38

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部