期刊文献+

基于小波神经网络的热值软测量建模 被引量:5

Modeling of Soft Measurement for Calorific Values Based on Wavelet Neural Network
下载PDF
导出
摘要 提出了一种基于小波神经网络的软测量建模方法和学习算法,这种方法被用来"测量"裂解炉燃料气热值。小波神经网络具有2层结构:小波降噪层和多层感知器层。小波降噪层主要用来对过程数据进行降噪变换,提高源信号的信噪比,多层感知器层用来辨识过程模型。小波神经网络不但具有多层感知器网络的自学习和逼近性能,而且可以利用小波降噪理论,克服源信号的噪声干扰。小波变换可以变换初始数据并进行特征提取,变换后的数据具有更高的信噪比,仿真结果显示小波神经网络具有良好的逼近能力和泛化性能。 A kind of modeling and study method for soft measurement based on wavelet neural network(WNN) is proposed.It is used to measure the calorific values of fuel gas in the cracker system.The WNN model consists of two layers: the wavelet de-noising layer and multilayer perceptron layer.The wavelet de-nosing layer is mainly used for data de-noising transform to increase the signal and noise ratio of the source signal.Multilayer perceptron layer is used for identifying the process model.WNN not only owns the property of self-learning and approximation which are held by multilayer perceptions network,but also can overcome the noise disturb to the source signal using the de-noising theory of wavelet.The wavelet can transform the original data and extract the features.The transformed data shows much higher signal noise ratio.The simulation results indicate that the WNN owns much better approximation and the generalizing performance.
出处 《石油化工自动化》 CAS 2011年第4期34-37,共4页 Automation in Petro-chemical Industry
关键词 小波神经网络 软测量 遗传算法 燃料气热值 WNN soft sensor GA calorific values of fuel gas
  • 相关文献

参考文献11

  • 1SU H B, FANL T, SCHLUP JR. Monitoring the Process of Curing of Epoxy/graphite Fiber Composites with a Recurrent Neural Network as a Soft Sensor[J]. Engineering Applications of Artificial Intelligence, 1998, 11:293 -306.
  • 2ADELI H, KARIM A. Fuzzy wavelet RBFNN Model for Freeway Incident Detection [J]. Journal of Transportation Engineering, 2000, 11 : 464 - 471.
  • 3颜学峰,余娟,钱锋.基于自适应偏最小二乘回归的初顶石脑油干点软测量[J].化工学报,2005,56(8):1511-1515. 被引量:24
  • 4袁平,毛志忠,王福利.基于多支持向量机的软测量模型[J].系统仿真学报,2006,18(6):1458-1461. 被引量:18
  • 5AKAY M. Wavelet Applications in Medicine[J]. IEEE Spectrum, 1997, (34): 50-56.
  • 6DAUBECHIES I. The Wavelet Transform, Time frequency Localization and Signal Analysis [J]. IEEE Trans. Inf. Theory, 1990,(36): 961-971.
  • 7MALI.AT S G. Matching Pursuits with Time-frequency Dictionaries[J]. IEEE Trans. Signal Process, 1993, (41): 3397-3415.
  • 8CHARLES C, RASSON J P. Wavelet Denoising of Poisson distributed Data and Applications[J]. Computational Statistics and Data Analysis, 2003, (43): 139 - 148.
  • 9DOYMAZ F, BANHTAZAD A. Wavelet based Robust Filtering of Process Data [J]. Computers and Chemical Engineering, 2001,(25):1549-1559.
  • 10NARENDRA K S. Identification and Control of Dynamic Systems using Neural Networks[J]. IEEE Trans. on Neural Networks, 1990, (1): 4-27.

二级参考文献20

  • 1孙彦广,陶百生,高克伟.基于智能技术的钢水温度软测量[J].仪器仪表学报,2002,23(z2):754-755. 被引量:6
  • 2张俊杰,王顺晃.电弧炉炼钢过程终点自适应预报及专家操作指导系统[J].自动化学报,1993,19(4):463-467. 被引量:15
  • 3John Neter, William Wasserman, Kutner Michael H.Applied Linear Regression Models. 1st ed. New York..Richard D. Irwin, INC. , 1983.
  • 4Jensen S A, Martens H. Food Research and Data Analysis.Martens H, Russwurn H, eds. New York: Applied Science Puht. , 1983. 253.
  • 5Vitezstav Centner, Massart D Luc, Optimization in locally weighted regression, Anal. Chem. , 1998, 70.
  • 6Getadi P, Kowatski B R. Partial least-squares regression.. Atutorial. A nlytical Chernical Acta, 1986, 185:1-17.
  • 7Itdiko E Frank. A nonlinear PLS model. Chemometrics and Intelligent Laboratory Systems, 1990 (8) : 109-111.
  • 8Suykens J A K, Vandewalle J. Least squares support vector machines classifiers [J]. Neural processing Letters (S0885-6125). 1999, 19(3):293-300.
  • 9Dasaratha VS, Richard CS, Eric BB. Process modeling using stacked neural networks [I]. AIChE Journal (S2529-2539). 1996, 42(9):2529-2539.
  • 10Cho S B, Kim J H. Combining multiple neural networks by fuzzy integral for recognition [J]. IEEE Transon System, Man and Cybern(S0018-9472). 1995, 25(2): 380-384.

共引文献39

同被引文献58

  • 1陈文杰,王晶.基于支持向量机的聚酯粘度在线软测量[J].控制工程,2005,12(5):492-495. 被引量:5
  • 2陈盛君.煤的恒容低位热值的快速测量[J].化肥工业,2006,33(3):37-38. 被引量:2
  • 3Ingfid Daubechies著,李建平,杨万年译.小波十讲[M].北京:国防工业出版社,2004.
  • 4THAM M T,MONTAGUE G A, MORRIS A J. Asoft-sensors for process estimation and inferential con-trol[J]. Journal of Process Control, 1991, 1(1) : 3 - 14.
  • 5YANG Y X, CHAI T Y_ Soft sensing based on artificial neural network [C] // Proceedings of the 1997 American ControlConfemice. America: [s. n. ], 1997,1: 674 - 678.
  • 6ROTEM Y, WACHS A, LEWIN D R. Ethylene compres-sor monitoring using model-based pca[J]. American Instituteof Chemical Engineers Journal,2000,46(9) : 3 - 14.
  • 7ZHANG H W, LENNOX B. Integrated condition moni-toring and control of fedbatch fermentation processes[J]. Journal of Process Control ,2004, 14(1) : 41 - 50.
  • 8tion mechanisms for data-driven soft sensor [J]. Com-puters and Chemical Engineering, 2011,35(1) : 1-24.
  • 9WANG X, KRUGER U, LENNOX B. Recursive par-tial least squares algorithms for monitoring complex in-dustrial processes [J]. Control Engineering Practice,2003, 11(6); 613 -632.
  • 10HE X B,YANG Y P. Variable mwpca for adaptiveprocess monitoring [ J ]. Industrial and EngineeringChemistry Research, 2008’ 47(2) : 419 - 427.

引证文献5

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部