期刊文献+

复数多值离散Hopfield神经网络的稳定性研究 被引量:1

Blind detection algorithm of complex multi-valued discrete Hopfield network
原文传递
导出
摘要 本文提出了一个新的复数多电平离散Hopfield神经网络,构造了新的适用于复数多电平离散神经网的激活函数和能量函数,分别讨论了异步与同步更新模式下神经网的稳定性.该能量函数不仅能描述文献能量函数不适用的复数多值Hopfield神经网的动力学特性,而且能保证待盲检测信号位于能量函数的最小值点.为验证CMDHNN的有效性,利用本文特有的性能函数下所构造的联结权阵盲检测MQAM信号.仿真试验表明:本算法仅需较短接收数据就可有效盲检测MQAM星座信号,仿真也证明了CMDHNN能量函数全局最小值的稳定性推论. A novel complex multi-valued discrete Hopfield neural network (CMDHNN) is proposed in this paper. A multi-valued discrete activation function and a new energy function for CMDHNN are constructed. The stabilities for multi-valued CMDHNN with asynchronous and synchronous operating modes are also analyzed seperately. The special energy functions own the ability to describe the dynamic characteristics of CMDHNN which the energy functions of existing references cannot explain. Meantime, these energy functions can make the true source signal vector correspond to the minimum point of the energy function of CMDHNN. Furthermore, to verify effectiveness of CMDHNN, the weighted matrix of CMDHNN is constructed by the specific cost function for the blind detection of signals. Simulation results show that the proposed CMDHNN can be used to blindly detect the dense MQAM constellation signals with shorter received signals and the global minimal value of the CMDHNN energy function is verified.
作者 张昀 张志涌
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2011年第9期200-207,共8页 Acta Physica Sinica
基金 国家自然科学基金(批准号:60772060)资助的课题~~
关键词 复数多电平离散Hopfield神经网络 盲检测 MQAM信号 complex multi-valued discrete hopfield neural network blind detection MQAM
  • 相关文献

参考文献12

  • 1张志涌,张昀.复数Hopfield盲恢复多用户QPSK信号[J].东南大学学报(自然科学版),2008,38(A02):18-22. 被引量:7
  • 2熊涛,张便利,常胜江,申金媛,张延忻.基于Hopfield神经网络的信元调度多重输入队列ATM交换结构及算法[J].物理学报,2005,54(5):2435-2440. 被引量:9
  • 3Gao H S,Zhang J. Fourth International Conference on Natural Computation . 2008
  • 4Cui B T,Chen J,Lou X Y. Chin.Phys.B . 2008
  • 5Qiu F,Cui B T,Ji Y. Chin.Phys.B . 2009
  • 6Zhang Y,Zhang Z Y. Proceedings of2010Sixth International Conference on Natural Computation . 2010
  • 7Liu Y,You Z. Neurocomputing . 2008
  • 8Zhou W,Zurada J M. Neurocomputing . 2009
  • 9Quan Weiwei,Guo Yanqing,You Xingang,and Kong Xiangwei.JPEG Quantization-Distribution Steganalytic Method. International Journal of Computer Science and Network Security . 2006
  • 10Mandan M G,Liang J,Noriyasu H.Static and Dynamic Neural Networks:From Fundamentals to Advanced Theory. . 2003

二级参考文献19

  • 1张志涌,BAI Erwei.SIMO含公零点信道的直接盲序列检测[J].电子学报,2005,33(4):671-675. 被引量:23
  • 2Ding Z, Li Y. Blind equalization and identification[M]. New York: Marcel Dekker, 2002.
  • 3Giannakis G B, Hua Y B, Stoica P, et al. Signal processing advances in wireless and mobile communications, vol. 1 : Trends in channel estimation and equalization[M].北京:人民邮电出版社,2002.
  • 4Bai Er-Wei, Li Qingyu, Zhang Zhiyong. Blind source separation/channel equalization of nonlinear channels with binary inputs [J ]. IEEE Trans Signal Processing, 2005,53 ( 7 ) : 2315 - 2323.
  • 5You C, Hong D. Nonlinear blind equalization schemes using complex-valued multilayer feedforward neural networks[J ].IEEE Trans Neural Networks, 1998, 9(6) : 1442- 1455.
  • 6Zhang X, Li L, Zhuo D, et al. A blind channel equalization algorithm based on feed forward neural network signal processing[C]//Proc ICSP. Beijing, China, 2004, 1 : 335 -338.
  • 7Hluchyj M G and Karol M J 1988 IEEE JSAC 6 1587.
  • 8Ni Nan 2001 Texas A&M University Ph. D. dissertation.
  • 9T. X. Brown and K. H. Liu 1990 IEEE JSAC 8 1428.
  • 10Young-Keun Park and Gyungho Lee 1997 IEEE JSAC 15 261.

共引文献14

同被引文献13

  • 1张志涌,BAI Erwei.SIMO含公零点信道的直接盲序列检测[J].电子学报,2005,33(4):671-675. 被引量:23
  • 2倪志伟.BP网络中激活函数的深入研究[J].安徽大学学报(自然科学版),1997,21(3):48-51. 被引量:6
  • 3ZHANG Y5ZHANG Z Y.Blind multi-valued signals detection using discrete Hopfield network[C]//Proc.2010 Sixth International Conference on Natural Computation.Beijing:IEEE Press,2010:1079-1083.
  • 4SENGUPTA DjILTIS R A.Neural solution to the multitarget tracking data association problem[J].IEEE Trans.Aerospace and Electronic Systems,1989,25(1):96-108.
  • 5MA R N,CHU P,ZHANGS R.Stability conditions for discrete delayed Hopfield neural networks[C]//Proc.Third International Conference on Natural Computation.Haikou,China:IEEE Press,2007:468-472.
  • 6SHEN Y,WANG J.Robustness analysis of global exponential stability of recurrent neural networks in the presence of time delays and random disturbances[J].IEEE Trans.Neural Networks and Learning Systems.2012.23(1):87-96.
  • 7MOULINES E,DUHAMEL P,CARDOSO J F,et al.Subspace methods for the blind identification of multichannel FIR filters[J].IEEE Trans.Signal Processing,1995.43(2):516-525.
  • 8GIANNAKIS G B,STOICA P,HUA Y B.Signal processing advances in wireless and mobile communication[M].Upper Saddle River,NJ,USA:Prentice Hall,2001.
  • 9张昀,张志涌.复数离散Hopfield网络盲检测64QAM信号[J].电子与信息学报,2011,33(2):315-320. 被引量:2
  • 10阮秀凯,张志涌.基于连续Hopfield型神经网络的QAM信号盲检测[J].电子与信息学报,2011,33(7):1600-1605. 被引量:7

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部