期刊文献+

磁性量子元胞自动机逻辑电路的转换特性研究 被引量:4

Switching behavior of logic circuits by magnetic quantum cellular automata
原文传递
导出
摘要 本文研究了磁性量子元胞自动机反相器和择多逻辑门等基本逻辑电路在不同纳磁体厚度和间距下的转换特性.采用单畴近似LLG方程对纳磁体以及电路进行了建模和仿真,结果表明更厚的纳磁体需要更大的转换磁脉冲,大厚度纳磁体逻辑电路表现出较慢的转换;相同厚度和间距下,择多逻辑门比反相器的转换时间略长.此外,模拟结果还表明纳磁体间距对反相器的转换过程影响明显,而对择多逻辑门则影响较小. In this paper, switching behaviors of MQCA inverter and majority logic gate with various nanomagnet thicknesses and spacings are studied. Single domain approximation Landau-Lifshitz-Gilbert equation is employed to model and simulate the circuits. It is shown that thicker nanomagnet needs larger switching magnetic pulse and logic circuits comprised of thicker nanomagnet demonstrate slower switching; majority logic gate needs more time to switch than inverter when they have the same nanomagnet thicknesses and spacings. Moreover, it is also shown that nanomagnet spacing has a larger effect on switching behavior of inverter than on majority logic gate.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2011年第9期767-773,共7页 Acta Physica Sinica
基金 国家高技术研究发展计划(批准号:2008AAJ225) 陕西省电子信息系统综合集成重点实验室基金(批准号:201115Y15)资助的课题~~
关键词 磁性量子元胞自动机 转换特性 厚度和间距 逻辑电路 magnetic quantum cellular automata switching behavior thickness and spacing logic circuit
  • 相关文献

参考文献16

  • 1宋三元,郭光华,张光富,宋文斌.矩形磁性纳米点动力学反磁化过程的微磁学研究[J].物理学报,2009,58(8):5757-5762. 被引量:4
  • 2G. Csaba,P. Lugli,A. Csurgay,W. Porod.Simulation of Power Gain and Dissipation in Field-Coupled Nanomagnets[J]. Journal of Computational Electronics . 2005 (1-2)
  • 3Amlani I,Orlov A,Toth G,Bernstein G H,Lent C S,Snider G L. Science . 1999
  • 4Yang X K,Cai L,Zhao X H. Electronics Letters . 2010
  • 5Niemier M,Crocker M,Sharon H X. IEEE International Symposium on Defect and Fault Tolerance of VLSI Systems . 2008
  • 6Alam M T,Siddiq M J,Bernstein G H,Niemier M,Porod W,Sharon H X. IEEE Trans.Nanotechnol . 2010
  • 7Vankamamidi V,Ottavi M,Lombardi F. IEEE Transactions on Communications . 2008
  • 8Imre A,Csaba G,Ji L,Bernstein G H,Porod W. Science . 2006
  • 9Niemier M,Dingler A,Sharon H X. Proceedings of26th IEEE International Conference on Computer Design . 2008
  • 10Kumari A,Bhanja S. IEEE Nanotechnology Materials and Devices Conference . 2009

二级参考文献19

  • 1Rave W,Hubert A 2000 IEEE Trans.Magn.36 3886.
  • 2White R L 2002 J.Magn.Magn.Mater.242-245 21.
  • 3Schabes M E 1991 J.Magn.Magn.Mater.95 249.
  • 4Usov N A,Chang C R,Wei Z H 2002 Phys.Rev.B 66 184431.
  • 5Kronmüller H,Hertel R 2000 J.Magn.Magn.Mater.215-216 11.
  • 6Chumakov D,McCord J,Schfer R,Schultz L,Vinzelberg H,Kaltofen R,Mnch I 2005 Phys.Rev.B 71 014410.
  • 7Hertel R,Kronmüller H 2000 Physica B 275 1.
  • 8Liu X X,Chapman J N,McVitie S 2004 Appl.Phys.Lett.84 4406.
  • 9Zheng Y F,Zhu J G 1997 J.Appl.Phys.81 5471.
  • 10Cowburn R P,Koltsov D K,Adeyeye A O,Welland M E,Tricker D M 1999 Phys.Rev.Lett.83 1042.

共引文献3

同被引文献57

  • 1International technology roadmap for semiconductors 2009 FEB/OLd. (2010-01 - 20) [2011-09- 07]. http://public, itrs. net/ Files/2009ITRS/Home2009. html.
  • 2LENT C S, TOUGAW P D. A device architecture for compu- ting with quantum dots [J]. Proceedings of the IEEE, 1997, 85 (4) : 541 - 557.
  • 3ORLOV A O, AMLANI I, BERNSTEIN G H, et al. Realiza- tion of a functional cell for quantum-dot cellular automata [J]. Science, 1997, 277 (5328) : 928 - 930.
  • 4IMRE A, CSABA G, JI L L, et al. Majority logic gate for magnetic quantum-dot cellular automata [J]. Science, 2006, 311 (5758): 205-208.
  • 5SNIDER G L, ORLOV A O, AMLANI I, et al. Quantum-dot cellular automata.- line and majority gate logic [J]. Japanese Journal of Applied Physics, 1999, 38 (12) : 7227 - 7229.
  • 6WALUS K, JULLIEN G A. Design tools for an emerging SoC technology: quantum dot cellular automata [J]. Proceedings of the IEEE, 2006, 94 (6): 1225- 1244.
  • 7NIEMIER M, DINGLER A, HU X S. Bridging the gap be- tween nanomagnetic devices and circuits [C] //Proceedings of the 26^th IEEE Internationai Conference on Computer Design. Lake Tahoe, Canada, 2008: 506-513.
  • 8HENNESSY K, LENT C S. Clocking of molecular quantum- dot cellular automata [J]. Journal of Vacuum Science and Technology: B, 2001, 19 (5): 1752-1755.
  • 9VANKAMAMIDI V, OTTAVI M, LOMBARDI F. Two-di mensional schemes for clocking/timing of QCA circuits [J]. IEEE Transactions on Computer-aided Design of Integrated Circuits and Systems, 2008, 27 (1): 34-44.
  • 10FROST S E, DYSART T J, KOGGE P M, et al. Carbon nanotubes for quantum-dot cellular automata clocking [C] // Proceedings of the 4th IEEE Conference on Nanotechnology. Munich, Germany, 2004: 171- 173.

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部