期刊文献+

纳米SiO_2材料声子热输运的格子玻尔兹曼法模拟 被引量:3

Simulation on Phonon Heat Transport of Silicon Dioxide Nanomaterial by Lattice Boltzmann Method
原文传递
导出
摘要 根据德拜物理模型,采用格子玻尔兹曼方法(LBM)对纳米二氧化硅薄膜内的声子热输运特性进行了模拟分析,得到了薄膜内的温度响应特性;在此基础上,分析了其法向有效导热系数。计算结果表明,当努森数大于0.01时,薄膜边界处出现温度跳跃,呈现出明显的微纳米尺度传热特性;当薄膜厚度小于20nm时,减小厚度可使其有效导热系数迅速降低;当薄膜厚度大于20nm时,其有效导热系数趋于恒定。 Based on the Debye model, the Phonon heat transport in nanofilm of silicon dioxide was simulated by Lattice Boltzmann method (LBM). The temperature distribution in silicon dioxide film was predicted by simulation to analyze the effective thermal conductivity. The calculated results show that the temperature slip phenomenon appears at the boundary when the Knudsen number Kn is larger than 0.01, which indicates the obvious microscale effect of heat conduction in the film. When the film thickness is less than 20 nm, its effective thermal conductivity descends sharply with the decrease of thickness. As the thickness is larger than 20 nm, however, the effective thermal conductivity tends to be constant.
出处 《工程热物理学报》 EI CAS CSCD 北大核心 2011年第9期1571-1574,共4页 Journal of Engineering Thermophysics
基金 国家自然科学基金项目(No.50776026 No.90816022)
关键词 纳米二氧化硅薄膜 格子玻尔兹曼法 声子热输运 导热系数 nanofilm of silicon dioxide lattice Boltzmann method phonon heat transport thermal conductivity
  • 相关文献

参考文献2

二级参考文献59

  • 1Yilbas B S.Physica A,2001,293(1-2):157-177.
  • 2Yilbas B S.Int.J.Heat and Mass Transfer,2003,46(18):3511-3520.
  • 3Al-Nimr M A.Haddad O M and Arpaci V S,Heat and Mass Transfer,1999,35(6):459-464.
  • 4Al-Nimr M A.Arpaci V S,J.Appl.Phys.,1999,85(5):2517-2521.
  • 5Al-Nimr M A,Masoud S.ASME J.Heat Transfer,1997,119(1):188-190.
  • 6Al-Nimr M A.Int.J.Thermophys,1997,18(5):1257-1268.
  • 7Al-Nimr M K and Arpaci V S.Int.J.Heat and Mass Transfer,2000,43(12):2021-2028.
  • 8Al-Nimr M A,Alkam M and Arpaci V.Heat and Mass Transfer,2002,38(7-8):609-614.
  • 9Qiu T Q and Tien C L.Int.J.Heat and Mass Transfer,1994,37(17):2789-2798.
  • 10Qiu T Q and Tien C L.Int.J.Heat and Mass Transfer,1994,37(17):2799-2808.

共引文献13

同被引文献30

  • 1David E G,Ray D, Harold C. Materials development for hypersonic flight vehicles [C]. USA: 14th AIAA/AHI Space Planes and Hypersonic Systems and Technologies Conference, 2006.
  • 2Cunnington G R, Lee S C,White S M. Radiative proper- ties of fiber-reinforced aerogel: theory versus experiment [J] Journal of Thermophysies and Heat Transfer, 1998, 12(1) :17-22.
  • 3Zeng S Q,Hunt A,Greif R. Mean free path and apparent thermal conductivity of a gas in a porous medium[J]. ASME J Heat Transfer, 1995,117(3) :758-761.
  • 4Zeng S Q, Hunt A , Greif R. Geometric structure and thermal conductivity of porous medium silica aerogel[J]. ASMEJ Heat Transfer, 1995, 117(4): 1055-1058.
  • 5Zhang X X,Wei G S,Yu F. Influence of some parameters on effective thermal conductiviiy of nano-porous aerogel super insulator [C]. San Francisco: Proceedings of the ASME Summer Heat Transfer Conference,2005.
  • 6Majumdar A. Microscale heat conduction in dielectric thin films [J] Journal of Heat Transfer,1993,15:7-16.
  • 7Swartz E T,Pohl R O. Thermal boundary resistance [J]. Review of Modern Physics, 1989,61 : 605-668.
  • 8Escobar R A,Amon C H. Thin film phonon heat conduc- tion by the dispersion lattice Boltzmann method [J]. Journal of Heat Transfer, 2008, 130:092402-1-8.
  • 9Goodson K E, Flik M I, Su L T, et al. Prediction and measurement of the thermal conductivity of amorphous dielectric layers [J]. Journal of Heat Transfer, 1994, 116(2) : 317-326.
  • 10Zeng T F,Liu W. Phonon heat conduction in micro- andnano-core-shell structures with cylindrical and spherical geometries [J]. Journal of Applied Physics, 2003,93: 4163-4168.

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部