期刊文献+

Preparation of ZnO Nanoparticles and Photocatalytic H2 Production Activity from Different Sacrificial Reagent Solutions

纳米ZnO的制备及其在不同牺牲试剂下的光催化产氢性能
下载PDF
导出
摘要 ZnO nanoparticles were synthesized via a direct precipitation method followed by a hetero- geneous azeotropic distillation and calcination processes, and then characterized by X-ray power diffraction, scanning electron microscopy, transmission electron microscopy, and ni- trogen adsorption-desorption measurement. The effects of Pt-loading amount, calcination temperature, and sacrificial reagents on the present ZnO suspension were investigated, photocatalytic H2 evolution efficiency from the The experimental results indicate that ZnO rianoparticles calcined at 400℃ exhibit the best photoactivity for the H2 production in comparison with the samples calcined at 300 and 500℃, and the photoeatalytie H2 production efficiency from a methanol solution is much higher than that from a triethanolamine solution. It can be ascribed to the oxidization of methanol also contributes to the H2 production during the photochemical reaction process. Moreover, the photocatalytic mechanism for the H2 production from the present ZnO suspension system containing methanol solution is also discussed in detail.
出处 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2011年第4期464-470,I0004,共8页 化学物理学报(英文)
基金 This work was supported by the National Natural Science Foundation of China (No.20973128 and No.20871096), the National High Tech Research and Development Program (No.2006AA03Z344), and the Program for New Century Excellent Talents in University of China (No.NCET-07-0637).
关键词 Photocatalytic hydrogen production ZnO Photocatalytic activity Sacrificial reagent 光催化制氢 纳米ZnO 光催化活性 牺牲试剂
分类号 O [理学]
  • 相关文献

参考文献31

  • 1A. Fujishima and K. Honda, Nature 238, 37 (1972).
  • 2A. Kudo, K. Omiori, and H. Kato, J. Am. Chem. Soc. 121, 11459 (1999).
  • 3R. Asahi, T. Morikawa, T. Ohwaki, and Y. Taga, Science 293, 269 (2001).
  • 4T. Y. Peng, D. N. Ke, P. Cai, K. Dai, L. Ma, and L. Zan, J. Power Sources 180, 489 (2008).
  • 5S. U. M. Khan, M. Al-Shahry, and W. B. M. Ingler Jr., Science 297, 2243 (2002).
  • 6H. B. Yi, T. Y. Peng, D. N. Ke, L. Zan, and C. H. Yan, Int. J. Hydrogen Energy 33, 672 (2008).
  • 7J. S. Jang, U. A. Joshi, and J. S. Lee, J. Phys. Chem. C 111, 13280 (2007).
  • 8Z. G. Zou, J. H. Ye, K. Sayama, and H. Arakawa, Nature 414, 625 (2001).
  • 9S. Ikeda, H. Hirao, S. Ishino, M. Matsumura, and B Ohtani, Catal. Today 117, 343 (2006).
  • 10K. Nalyanasundaram and M. Gratzel, Coord. Chem Rev. 177, 347 (1998).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部