期刊文献+

基于自适应学习率的背景建模方法 被引量:9

Background Modeling Approach Based on Self-adaptive Learning Rate
下载PDF
导出
摘要 针对高斯混合模型中均值和方差的学习,提出基于自适应学习率的背景建模方法。统计每个像素模型被匹配的次数,在线更新学习率。在初始化背景时,分配一个全局的学习率,采用传统高斯混合模型的学习方式;在更新背景时,为每个像素分配一个学习率,采用自适应的学习方式。实验结果表明,该方法与传统高斯混合背景模型相比,有较好的学习能力与稳定性,能提高运动目标检测的正确率。 This paper proposes a background modeling approach based on self-adaptive learning rat aiming at the update of the learning rate about Gaussian mixture model. The initial background is established using the traditional Gaussian mixture model with a global learning rate. The self-adaptive learning rate is used for each pixel according to the number of matching when the background is updated. Experimental results show that compared with moving object detection approach based on conventional Gaussian mixture model, it has a desirable stability and learning ability.
出处 《计算机工程》 CAS CSCD 北大核心 2011年第15期187-189,共3页 Computer Engineering
基金 浙江省科技计划基金资助项目(2009C03015-4)
关键词 高斯混合模型 学习率 目标检测 匹配 背景差分 Gaussian mixture model learning rate object detection matching background subtraction
  • 相关文献

参考文献7

二级参考文献39

  • 1刘勃,魏铭旭,周荷琴.混合交通环境中的阴影检测算法[J].信号处理,2005,21(2):172-177. 被引量:8
  • 2刘洁,张东来.关于自适应高斯混合背景模型的更新算法的研究[J].微计算机信息,2006(08S):241-242. 被引量:23
  • 3代科学,李国辉,涂丹,袁见.监控视频运动目标检测减背景技术的研究现状和展望[J].中国图象图形学报,2006,11(7):919-927. 被引量:169
  • 4Zhao Tao, Nevatia R. Tracking Multiple Humans in Complex Situations[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(9): 1208-1221.
  • 5Cucchiara R, Grana C, Piccardi M, et al. Statistic and Know Ledgebased Moving Object Detection in Traffic Scenes[C]//Proc. of the 3rd IEEE Conference on Intelligent Transportation Systems. Dearborn, Indiana, USA: IEEE Computer Society Press, 2000.
  • 6Rosin P L, Ell I S T. Image Difference Threshold Strategies and Shadow Detection[M]. Birmingham, UK: BMVA Press, 1995: 347-356.
  • 7Cucchiara R, Grana C, Piccardi M, et al. Improving Shadow Suppression in Moving Object Detection with HSV Color Information[C]//Proc. of IEEE Intelligent Transportation Systems Conference. Oakland, USA: IEEE Press, 2001: 334-339.
  • 8CUCCHIARA R, PICCARDI M, PRATI A. Detecting moving objects, ghosts, and shadows in video streams[ EB/OL]. [ 2009 - 05 - 15]. http://www, cs. utsa. edu/-qitian/seminar/Fall04/video/ 01233909. pdf.
  • 9LOB P L, VELASTIN S A. Automatic congestion detection system for underground platforms[ C]// Proceedings of 2001 International Symposium on Intelligent Multimedia Video and Speech Processing. New York: IEEE, 2001:158 - 161.
  • 10RIDDER C, MUNKELT O, KIRCHNER H. Adaptive background estimation and foreground detection using Kalman-fihering [ EB/ OL]. http://serdis, dis. ulpgc. es/-ii-vpc/MatDocerr/notas_practicas/TC_2/ICRAM-95-Ridder-etal_ps.

共引文献110

同被引文献88

引证文献9

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部