期刊文献+

一种有监督的稀疏保持近邻嵌入算法 被引量:3

Supervised Sparse Neighborhood Preserving Embedding Algorithm
下载PDF
导出
摘要 为充分利用样本的类别信息,提出一种有监督的稀疏保持近邻嵌入算法(SSNPE)。该算法结合稀疏表示和保持近邻的思想,根据先验类标签信息保持局部邻域的固有几何关系。采用最小近邻分类器估算识别率,测试结果表明,在姿态、光照和表情变化的情况下,SSNPE都具有较高的识别率。 In order to make full use of the classification information of samples,an Supervised Sparsity Neighborhood Preserving Embedding(SSNPE) algorithm is proposed.It combines the ideas of Sparse representation and NPE,so it can hold the strong discriminating power while preserving the intrinsic geometry relations of the local neighborhoods according to prior class-label information.Nearest neighborhood algorithm is used to construct classifiers,the proposed method is tested and evaluated in the Yale face database and AR face database.Experimental results show that SSNPE has good performance even if pose,illumination,face expression change.
作者 郑豪 金忠
出处 《计算机工程》 CAS CSCD 北大核心 2011年第16期155-157,共3页 Computer Engineering
基金 江苏省高校自然科学基金资助项目(09KJD520011)
关键词 人脸识别 稀疏表示 保持近邻嵌入 有监督 稀疏重构权值 face recognition sparse representation Neighborhood Preserving Embedding(NPE) supervised sparse reconstruction weight
  • 相关文献

参考文献11

  • 1范燕,郑宇杰,吴小俊,杨静宇.对称LDA及其在人脸识别中的应用[J].计算机工程,2010,36(1):201-202. 被引量:11
  • 2刘敏,李晓东,王振海.一种新的有监督保局投影人脸识别算法[J].计算机应用,2009,29(5):1416-1418. 被引量:12
  • 3王国强,欧宗瑛,刘典婷,苏铁明.基于保持近邻判别嵌入的人脸识别[J].大连理工大学学报,2008,48(3):378-382. 被引量:11
  • 4Donoho D.Compressed Sensing. IEEE Transactions on Information Theory . 2006
  • 5Martinez A M,Benavente R.The AR Face Database. http://rvll.ecn.purdue.edu/-aleix/aleix_face_DB.html . 1998
  • 6Turk Matthew,Pentlad Alex.Eigenfaces for recognition. Journal of Cognitive Neuroscience . 1991
  • 7Roweis ST,Saul LK.Nonlinear dimensionality reduction by locally linear embedding. Science . 2000
  • 8Belkin M,Niyogi P.Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation . 2003
  • 9He X F,Cai D,Yan S C,et al.Neighborhood preserving embedding. Proceedings of the Tenth IEEE International Conference on Computer Vision . 2005
  • 10Baraniuk R.A lecture on compressive sensing. IEEE Signal Processing Magazine . 2007

二级参考文献29

  • 1张生亮,杨静宇.二维投影与PCA相结合的人脸识别算法[J].计算机工程,2006,32(16):165-166. 被引量:6
  • 2ZHAO W, CHELLAPPA R, PHILLIPS P J, et al. Face recognition: A literature survey[ J]. ACM Computing Surveys, 2003, 35 (4) : 399 -458.
  • 3TURK M, PENTLAND A. Eigenfaces for recognition [ J]. Journal of Cognitive Neuroscience, 1991,3(1) : 71 -86.
  • 4BELHUMEUR P N, HESPANHA J P, KRIEGMAN D J. Eigenfaces vs. fisherfaces: Recognition using class specific linear projection [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7) : 711 -720.
  • 5HE XIAO - FEI, YAN SHUI - CHENG, HU YU - XIAO, et al. Face recognition using laplacianfaces[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(3) : 328 - 340.
  • 6ROWEIS S T, SAUL L K. Nonlinear dimensionality reduction by locally linear embedding [ J]. Science, 2000, 290(5500) : 2323 - 2326.
  • 7ZHAO HAI-TAO, SUN SHAO-YUAN, JING ZHONG-LIANG, et al. Local structure based supervised feature extraction[ J]. Pattern Recognition, 2006, 39(8) : 1546 - 1550.
  • 8DENG CAI, XIAOFEI HE, JIAWEI HAN, et al. Orthogonal laplacianfaces for face recognition[ J]. IEEE Transactions on Image Processing, 2006, 15(11) : 3608 - 3614.
  • 9ZHU LEI, ZHU SHAN-AN. Face recognition based on orthogonal discriminant locality preserving projections [ J]. Neurocomputing,2007,70:1543 -1546.
  • 10PHILLIPS P J, MOON H, RIZVI S A, et al. The feret evaluation methodology for face-recognition algorithms[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(10) : 1090 - 1104.

共引文献29

同被引文献44

  • 1Hotelling H. Analysis of a complex of statistical variables into principal components[ J ]. J. Edu. Psychol, 1933 (24) :417 - 441.
  • 2Fisher R A. The use of multiple measurements in taxonomic problems [J]. Ann. Eug,1936(7) :179 - 188.
  • 3Belkin M,Niyogi P. Laplacian eigenmaps and spectral techniques forembedding and clustering [ M ] //Advances in Neur Information Pro-cessing Systems, Vol. 17. Cambridge: MIT Press,2003.
  • 4Roweis S T, Saul L K. Nonlinear dimensionality reduction by locallylinear embedding[ J] . Science,2000,5500(290) :2323 -2326.
  • 5He X F, Niyogi P. Locality preserving projections[ C]//Proceedings ofthe Conference on Advances in Neural Information Processing Systems,2003.
  • 6He X F, Cai D,Yan S C, et al. Neighborhood preserving embedding[C].IEEE International Conference on Computer Vision (ICCV) ,2005.
  • 7Wei J, Peng H. Neighbourhood preserving based semi-supervised di-mensionality reduction [ J]. Electronics Letters,2008 ,44 ( 20 ) : 1190-1191.
  • 8Wright J, Yang A, Sastry S,et al. Robust face recognition via sparserepresentation [ J ]. IEEE Transactions on Pattern Analysis and MachineIntelligence,2009,31 (2) :210 —227.
  • 9Qiao L, Chen S, Tan X. Sparsity preserving projections with applica-tions to face recognition[ J]. Pattern Recognition, 2010 ,43 (1) :331 -341.
  • 10Jain A K, Duin R P W, Mao J C. Statistical Pattern Recognition: A Review[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(1): 4-37.

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部