期刊文献+

一类食饵具有常数投放率系统的恢复率 被引量:2

The Recovery Rate of Kind Systems With Constant Stocking Rate of the Prey
原文传递
导出
摘要 在现实的生态系统中,特别当捕食者的密度大或捕食能力强时,人们常采用食饵补充的方式来控制捕食者和食饵种群数量的稳定,以达到生态平衡.本文在Chisholm,R.A.和Filotas,E.研究的捕食—食饵模型基础上,定义了食饵具有常数投放率的捕食系统,讨论了此系统的恢复率与食饵最大容量之间的关系以及投放率对恢复率和预警长度的影响.最后通过算例分析了递减的恢复率作为系统转移的指示器与投放率与食饵最大容量的关系,说明食饵的投放率可增强预警效果. In practical ecological systems, especially when the density of the predator is large or predatory ability is powerful, people often control the stability of the populations of predators and prey by stocking prey in order to achieve ecological balance. Based on the predator-prey model studied by Chisholm, R. A. and Filotas, E., this paper defined a predator-prey model with constant stocking rate of the prey, and discussed the relationship of the recovery rate and the carrying capacity of the prey as well as the effects of the stocking rate on the recovery rate and warning length. Finally, this paper analyzed the relation between the decreasing recovery rate as a indicator of the system shift and the stocking rate and the carrying capacity of the prey via examples, and showed that the stocking prey can increase effects of the warning.
出处 《生物数学学报》 CSCD 北大核心 2011年第2期303-310,共8页 Journal of Biomathematics
关键词 捕食-食饵系统 投放率 恢复率 均衡点 Predator-prey System Stocking Rate Recovery Rate Equilibrium
  • 相关文献

参考文献14

  • 1Tanner J T. The stability and the intrinsic growth rates of prey and predator population[J]. Ecology, 1975, 56(3):855-867.
  • 2Rahmstorf S. Ocean circulation and climate during the past 120,000 years[J]. Nature, 2002, 419(5):207-213.
  • 3Scheffer M, Carpenter S R. Catastrophic regime shifts in ecosystems: linking theory to observation[J]. Trends in Ecology & Evolution, 2003, 18(11):648-656.
  • 4Brock, W.A., Carpenter, S.R. Variance as a leading indicator of regime shift in ecosystem services[J]. Ecology and Society, 2006, 11(6):9.
  • 5Scheffer, M., Carpenter, S., Foley, J.A., Folke, C., Walker, B. Catastrophic regime shifts in ecosystems[J] Nature, 2001, 418(2):591-596.
  • 6Holling, C.S. Resilience and stability of ecological systems[J]. Annual Review of Ecology and Systematics 1973, 4(2):1-23.
  • 7Van Nes, E.H., Scheffer, M. Slow recovery from perturbations as a generic indicator of a nearby catastrophic shift[J]. American Naturalist, 2007, 169(11):738-747.
  • 8Chisholm, R.A., Filotas, E.,. Critical slowing down as an indicator of transitions in two-species models[J]. Journal of Theoretical Biology, 2009, 257(7):142-149.
  • 9Liu Zhijun, Tan Ronghua. Impulsive harvesting and stocking in a Monod-Haldane functional response predator-prey system[J]. Chaos, Solitons and Fractals, 2007, 34(2):454-64.
  • 10Jiao Jianjun, Chen Lansun et al. A delayed stage-structured predator-prey model with impulsive stocking on prey and continuous harvesting on predator[J]. Applied Mathematics and Computation, 2008, 195(8):316- 325.

二级参考文献3

  • 1陈兰荪,数学生态学模型与研究方法,1988年
  • 2张芷芬,微分方程定性理论,1985年
  • 3叶彦谦,极限环论,1984年

共引文献13

同被引文献9

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部