期刊文献+

一类非线性Lotka-Volterra系统的正概周期解 被引量:2

On the Positive Almost Periodic Solutions of a Class of Nonlinear Lotka-Volterra Type System
原文传递
导出
摘要 通过变换和不动点定理,研究了一类非线性Lotka-Volterra系统的正概周期解的存在性,获得了新的结果. With the help of a substitution and applying the fixed point theorem, we derive a criterion of the existence of positive almost periodic solutions for a class of Lotka-Volterra type system.The main results improve and generalize the former results.
机构地区 江苏大学理学院
出处 《生物数学学报》 CSCD 北大核心 2011年第2期329-338,共10页 Journal of Biomathematics
基金 国家自然科学基金资助项目(10771088) 江苏大学高级人才专项基金资助项目(07JDG079)
关键词 LOTKA-VOLTERRA系统 正概周期解 不动点定理 时滞 Lotka-Volterra type system Positive almost periodic solution Fixed point theorem Delay
  • 相关文献

参考文献7

二级参考文献21

  • 1陆忠华,陈兰荪.周期系数三种群Lotka-Volterra混合模型分析[J].纯粹数学与应用数学,1995,11(2):81-85. 被引量:13
  • 2Chen X. X. and Chen F. D., Almost-periodic solutions of a delay population equation with feedback control [J], Nonlinear Analysis: Real World Appl, 2006, 7:559-571.
  • 3Yang X. T., Global attractivity and positive almost periodic solution of a single species population model [J], J. Math. Anal. Appl., 2007, 336:111-126.
  • 4Xia Y. H., Cao J. D. and Huang Z. K., Existence and exponential stability of almost periodic solution for shunting inhibitory cellular neural networks with impulses [Jl, Chaos, Solitons and Fractals, 2007, 34:1599-1607.
  • 5Zhang L. J. and Si L. G., Existence and exponential stability of almost periodic solution for BAM neural networks with variable coefficients and delays [J], Appl. Math. Comput., 2008, 194:215-223.
  • 6Wang X. and Li Z. X., Globally dynamical behavior for a class of nonlinear functional difference equation with almost periodic coefficients [J], Appl. Math. Comput., 2007, 190:1116-1124.
  • 7Meng X. Z. and Chen L. S., Periodic solution and almost periodic solution for a nonautonomous Lotka-Volterra dispersal system with infinite delay [J], J. Math. Anal. Appl., 2008, 339:125-145.
  • 8Meng X. Z., Xu W. J. and Chen L. S., Profitless delays for a nonautonomous Lotka- Volterra predator-prey almost periodic system with dispersion [J], Appl. Math. Comput., 2007, 188:365-378.
  • 9Zhang S. N. and Zheng G., Almost periodic solutions of delay difference systems [J], Appl. Math. Comput., 2002, 131:497-516.
  • 10Teng Z. D., On the positive almost periodic solutions of a class of Lotka-Volterra type systems with delays [J], J. Math. Anal. Appl., 2000, 249:433-444.

共引文献17

同被引文献37

  • 1黄振坤,陈凤德.具有反馈控制的两种群竞争系统的概周期解[J].生物数学学报,2005,20(1):28-32. 被引量:3
  • 2Wu J. Theory and Applications of Partial Functional Differential Equations[M]. New York: Springer-Verlag, 1996.
  • 3Erbe L H, Freedmann H I, Liu X Z, et al. Comparison principles for impulsive parabolic equations with application to models of single species growth[J]. J.Aust.Math.Soc.Ser, 1991, B32:382-400.
  • 4He L H, Liu A P. Existence and uniqueness of solutions for nonlinear impulsive partial equations with delay[J]. Nonlinear Analysis: Real World Applications, 2010, 11: 952-958.
  • 5Pao C V. Coupled nonlinear parabolic systems with time delays[J]. J.Math.Anal.Appl, 1995, 196:237-265.
  • 6Pao C V. Periodic Solution of Parabolic Systems with Time Delays[J]. J. Math.Anal. Appl, 2000, 251:251- 263.
  • 7Pao C V. Stability and attractivity of periodic solutions of parabolic systems with time delays[J]. J.Math.Anal.Ap. pl, 2005, 304:423-450.
  • 8Cheng Cui, Xiao wang. Existence and Stablity of Periodic Solutions and Almost Periodic Solutions of Immune Reaction Marchuk's Model[A].Processdings of the 5th International Congress on Mathematical Biology[C]. Nanjing:World Academic Press, 2011.
  • 9Liu Z J,Wu J H,Tan R H,et al.Modeling and analysis of a periodic delayed two-species model of facultative mutualism[J].Appl Math Comput,2010,217(2):893-903.
  • 10Xia Y H,Cao J D,Zhang H Y,et al.Almost periodic solutions of n-species competitive system with feedback controls[J].J Math Anal Appl,2004,294(2):503-522.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部