期刊文献+

一种非线性系统周期解的延拓算法

A continuation algorithm for periodic solutions of nonlinear dynamical system
下载PDF
导出
摘要 提出了一种非线性系统周期解的延拓算法。指出了非线性系统周期解在分岔点处由于雅可比矩阵奇异而导致一般延拓方法延拓失败问题;然后基于推广的打靶法的思想,将普通延拓算法推广,提出了一种用于周期解延拓的算法。对于非线性动力系统,该算法可以在已知某一参数下的周期解的基础上,求解出在一定参数范围内非线性动力系统的解随参数的连续变化情况。应用该方法对非线性柔性转子-轴承系统的周期解与参数的依赖关系进行了求解,验证了方法的有效性。 A continuation algorithm for periodic solutions of nonlinear dynamical system is presented in this paper.Firstly,continuation failure problem is pointed out that using general continuation algorithm to determine the relationship of the solution and the parameter of the nonlinear system in bifurcation point because of the singularity of Jacobian matrix.Then,based on the idea of the shooting method,by generalizing the general continuation algorithm,a sort of continuation algorithm is presented for continuing periodic solution of nonlinear system.This algorithm can solve the solution under a certain range of parameters based on the known periodic solution under a particular parameter of the nonlinear system.As an example,the dependence relationship of the periodic solution and the parameter is solved using this algorithm for an eight-dimensional flexible rotor-bearing system.The validity of this algorithm is verified by the numerical results obtained in the example.
机构地区 西安理工大学
出处 《应用力学学报》 CAS CSCD 北大核心 2011年第4期349-355,449,共7页 Chinese Journal of Applied Mechanics
基金 国家自然科学基金科技重大专项(2009ZX04014-032) 国家自然科学基金(10972179) 陕西高校省级重点实验室科研项目(09JS100)
关键词 非线性动力系统 周期解 打靶法 分岔 延拓算法 nonlinear dynamical system,periodic solution,shooting method,bifurcation,continuation algorithm
  • 相关文献

参考文献8

  • 1Luo G W. Dynamics of an impact forming machine[J]. International Journal of Mechanical Sciences, 2006, 48: 1295-1313.
  • 2Sopanen J, Mikkola A. Dynamic model of a deep-groove ball bearing including localized and distributed defects, Part 1: theory [J]. Proceedings of the institution of Mechanical Engineers, PartK: JoumalMulti-bodyDynamics, 2003, 217: 201-218.
  • 3Sopanen J, Mikkola A. Dynamic model of a deep-groove ball bearing including localized and distlibuted defects, Part 2: implementation and results[J]. Proceedings of the institution of Mechanical Engineers, Part K: Journal Multi-body Dynamics, 2003, 217: 213-223.
  • 4Xu J X, Jiang J. The global bifurcation characteristics of force Van der Pol oscillator[J]. Chaos, Solitons and Fractals, 1996, 7(1): 3-19.
  • 5Tong Z, Xu J X, Chen C L. Research on the periodic orbit of nonlinear gynamic fystems using Chebyshev polynomials [J]. Journal of Sound and Vibration, 2001, 245(2): 239-250.
  • 6Sundararajan P, Noah S T. Dynamics of forced nonlinear systems using shooting/arc-length continuation method-Application to rotor systems[I]. ASME J Vibration and Acoustics, 1997, 119.- 9-20.
  • 7Lau S L, Chenung Y K. Wu S Y. Incremental harmonic balance method with multiple time scales for a periodic vibration of nonlinear dystem[J]. Journal of Mechanics, 1983, 50: 816-871.
  • 8Li D X, Xu J X. A new method to determine the periodic orbit of a nonlinear dynamics system and its period[J]. Engineering with Computers, 2005, 20: 316-322.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部