期刊文献+

基于多尺度融合和相关性分析的全方向M型心动图优化研究 被引量:1

Optimization of Onmi-directional M-mode Cardiography Based on Multi-scale Integration and Correlation Analysis
下载PDF
导出
摘要 针对全方向M型心动图在对目标运动曲线检测过程因虚假边缘点而存在误检问题进行研究,在充分分析全方向M型心动图特点的基础上,设计一种结合多尺度融合和相关性分析的全方向M型心动图检测算法。该算法首先通过构建小波函数在不同的固定尺度空间下进行运动曲线检测,然后对不同尺度下检测出的运动曲线进行融合,最后结合心脏运动的相关性信息生成正确的运动曲线。通过LEJ-2型全方向M型系统的实验表明,该算法能自动去除全方向M型心动图中目标运动曲线的虚假边缘、无关噪声等干扰,同时准确保留有用信息,从而大大减轻系统的人工干预程度,实现了对国家发明专利"全方向M型心动图方法及其系统98 125713.5"系统的优化设计。 This paper studied on motion curve optimization of onmi-directional M-mode cardiography.A detection algorithm was designed based on a combination of multi-scale integration and correlation analysis after a full analysis of all the characteristic of onmi-directional M-mode cardiography.Firstly the motion curve was detected by constructing wavelet function at different spatial scales,then the motion curves of different spatial scales were integrated.Finally the correct motion curve was generated combined with the cardiac motion information.The experiment by LEJ-2 onmi-directional M-mode cardiography showed the algorithm could automatically remove the false edge,noise of onmi-directional M-mode cardiography,keep accurate and useful information,thus greatly reduced the human intervention.The optimal design of the state invention patents "the onmi-directional M-mode cardiography and its system 98 125713.5" was realized.
出处 《中国生物医学工程学报》 CAS CSCD 北大核心 2011年第4期533-540,共8页 Chinese Journal of Biomedical Engineering
基金 欧盟项目Tele-imagingin Medicine CN/ASIA-IT&C/009(91450) 国家自然科学基金(10871221) 卫生部科学研究基金-福建省卫生教育联合攻关计划(WKJ2005-2-010)
关键词 全方向M型心动图 相关性分析 运动曲线融合 onmi-directional M-mode cardiography correlation analysis motion curve fusion
  • 相关文献

参考文献12

二级参考文献56

共引文献81

同被引文献14

  • 1林强,石江宏.超声心动图的一种动态信息——全方向M型心动图[J].仪器仪表学报,2005,26(4):437-440. 被引量:22
  • 2MISHRA B, WILSON P, and WILCOCK R. A geometric algebra co-processor for color edge detection[J]. Electronics, 2015, 4(1): 94-117.
  • 3FUJITA Y and HAMAMOTO Y. A robust automatic crack detection method from noisy concrete surfaces[J]. Machine Vision and Applications, 2011, 22(2): 245-254.
  • 4DO M N and VETTERLI M. The contourlet transform:an efficient directional multiresolution image representation[J]. IEEE Transactions on Image Processing, 2005, 14(12): 2091-2106.
  • 5PANDIARAJAN K. Static security enhancement using fuzzy particle swarm optimization[J]. Compel International Journal of Computations & Mathematics in Electrical, 2016, 35(1): 172-186.
  • 6GUO X and GUO B P. A fuzzy filter for color image corrupted by mixed noise[J]. IEEE Information and Knowledge in the Internet of Things, 2014, 10: 177-181.
  • 7PAL S K and KING R A. Image enhancement using fuzzy set[J]. Electronics Letters, 1980, 16(10): 376-378.
  • 8DALE J E, ERCOLANO B, and BONNELL I A. Optimization on processing parameters of extrusion technology based on grey system theory[J]. European Heart Journal, 2011, 25(2): 113-120.
  • 9PRATT W K. Digital Image Processing[M]. New York: Wiley, 2007: 223-245.
  • 10CHEN L, HUANG X, TIAN J, et al. Blind noisy image quality evaluation using a deformable ant colony algorithm[J]. Optics & Laser Technology, 2014, 57(4): 265-270.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部