期刊文献+

一种基于KPCA和形状先验知识的图像分割模型 被引量:3

Image Segmentation Based on KPCA and Shape Priori
下载PDF
导出
摘要 对含有噪声、遮挡和信息缺失的图像进行分割,如果仅使用图像自身信息难以得到满意的结果。因此,本研究提出了一种新的融合图像信息和形状先验知识的可变形模型。在Chen等人的工作基础上,提出用核主元分析(KPCA)代替主元分析(PCA)来捕获形状信息。KPCA能更好地表示形状先验知识,允许待分割的目标形状与先验形状存在较大差异或非线性变形,而PCA需两者足够接近。同时,所用的分割模型包含了图像信息项和形状先验项,充分考虑了在分割过程中平衡全局图像信息和形状先验知识的相互作用。将本研究的模型和基于PCA的分割模型应用于合成图像和医学CT图像,结果表明KPCA更能准确地识别出与先验形状差异较大或背景污染严重的目标物体。 Segmentation means to separate an object from the background in a given image.Relying on image information alone can not yield satisfying results due to noise,occlusion,or missing parts existence.To effectively solve this problem,it is necessary to introduce shape priori into the segmentation model.This paper proposes a new deformable model based on the shape priori.Inspired by the works of Chen et al,we use KPCA(kernel PCA) instead of PCA(principal component analysis) to capture the shape information.KPCA can express better shape priori knowledge and allows nonlinear transformation or a quite difference between the object and the priori shape.However,PCA requires that the two shape need to be similar enough.Moreover,our segmentation model includes the image term and the shape term to balance the influence of the global image information and the shape priori knowledge in proceed of segmentation.Our model and the segmentation model based on PCA are applied to synthetic images and CT medical images.The comparative results show that KPCA can more accurately identify the object with large deformation or with serious background noise.
作者 万小萍 顾勇
出处 《中国生物医学工程学报》 CAS CSCD 北大核心 2011年第4期541-548,共8页 Chinese Journal of Biomedical Engineering
基金 中央高校基本科研业务费(CDJZR10230007)
关键词 图像分割 核主元分析(KPCA) 形状先验 可变形模型 水平集 image segmentation kernel principal component analysis shape priori deformable model level sets
  • 相关文献

参考文献15

  • 1Kass M, Witkin A, Terzopoulos D. Snakes: Active contour models [ J]. International Journal of Computer Vision, 1988, 1 (4) :321 -331.
  • 2Osher S, Sethian J. Fronts propagating with curvature dependent speed: algorithms based on the hamilton-jacobi [ J]. Journal of Computational Physics, 1988, 79 ( 1 ) : 12 - 49.
  • 3Mumford D, Shah J. Optimal approximations by piecewise smooth functions and associated variational problems [ J ]. Communications on Pure and Applied Mathematics, 1989, 42 (5) :577 -685.
  • 4Chen Y, Thiruvenkadam S, Huang F, et al. On the incorporation of shape priors into geometric active contours [ C ]// Proceedings of the IEEE Workshop on Variational and Level Set Methods. Washington: IEEE, 2001 : 145 - 152.
  • 5Cremers D, Tischhauser F, Weickert J, et al. Diffusion snakes: Introducing statistical shape knowledge into the mumford-shah functional [J]. International Journal of Computer Vision, 2002, 50(3) :295 -313.
  • 6Tsai A, Yezzi A, Wells, W, et al. A shape-based approach to the segmentation of medical imagery using level sets [ J]. IEEE transactions on medical imaging, 2003, 22 (2) : 137 - 154.
  • 7Leventon M, Grimson W, Faugeras O. Statistical shape influence in geodesic active contours[ C ]// Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. South Carolina: IEEE, 2000 : 316 - 323.
  • 8Chan T, Vese L. Active contours without edges [ J]. IEEE Transactions on Image Processing. 2001,10 ( 2 ) : 266 - 277.
  • 9Bresson X, Vandergheynst P, Thiran J. A variational model for object segmentation using boundary information and shape prior driven by the mumford-shah functional [ J ]. International Journal of Computer Vision, 2006, 68 (2) : 145 - 162.
  • 10Cremers D, Osher S, Soatto S. Kernel density estimation and intrinsic alignment for knowledge-driven segmentation: teaching level sets to walk[ C ]// Proceedings of Springer Pattern Becognition. Rasmussen: Springer, 2004:36-44.

同被引文献39

  • 1郑宇杰,杨静宇,吴小俊,於东军.基于对称ICA的特征抽取方法及其在人脸识别中的应用[J].模式识别与人工智能,2006,19(1):116-121. 被引量:6
  • 2Chan T, Zhu W. Level set based shape prior segmentation[ C ]// Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego:lnstitule of Electrical and Electronics Engineers Computer Society, 2005:1164-1170.
  • 3Teboul O, Simon L, Koutsourakis P, et al. Segmentation ofbuilding facades using procedural shape priors [ C ]//Pro- ceedings of IEEE Conference on Computer Vision and Pattern Recognition. San Diego: Institute of Electrical and Electronics Engineers Computer Society, 2010: 3105-3112. [ DOI: 10. 1109/CVPR. 2010. 5540068 ].
  • 4Lei Z, Qiang J. A level set-based global shape prior and its application to image segmentation[ C ]//Proceedings of Computer Vision and Pattern Recognition Workshops. Miami: IEEE Com- puter Society, 2009: 17-22. [DOI: 10. ll09/CVPR. 2009. 5204275 ].
  • 5Leventon M, Grimson W, Faugeres O. Statistical shape influence in geodesic aetive contours [ C ]//Proceedings of IEEE Interna- tional Conference on Computer Vision and Pattern Recognition. Hilton Head Island: IEEE Computer Society, 2000, 316-323.
  • 6Tsai A, Yezzi A J, Willsky A S. A shape-based approach to the segmentation of medical imagery using level sets [ J ]. IEEE Trans. on Medical Imaging, 2003,22(2) :137-154. [DOI: 10. 1109/TMI. 2002. 808355 ].
  • 7Bresson X, Vandergheynst P, Thiran J P. A variatioal model for object segmentation using boundary information and shape prior driven by the Murnford-Shah functional [J]. Int. J. Computer Vision, 2006, 68: 145-162.
  • 8Liu Z H, Chen B, Chen W S. Shape prior extracted by 2D-PCA for intensity-based image segmentation [ C ]// Proceedings ofWavelet Analysis and Pattern IEEE, 2011: 65-68. [ DOI: 6014489 ].
  • 9Recognition. Guilin, China 10. ll09/ICWAPR. 2011 Chen F, Yu H, Hu R. Simultaneous variational image segmenta- tion and object recognition via shape sparse representation [ C ]// Proceedings of International Conference on Image Processing. Hong Kong, China: IEEE Computer Society, 2010 : 3057-3060. [ DOI: 10.1109/ICIP. 2010. 5654176].
  • 10Cremers D, Kohlberger T, Schnoerr C. Shape statistics in kernel space for variational image segmentation [ J ]. Pattern Recogni- tion, 2003, 36 : 1292-1943. [ DOI : 10. 1016/S0031-3203 (03) 00056-6].

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部