期刊文献+

基于脑电运动速度想象的单次识别研究 被引量:4

The Study of Single-trial Identification of Imagined Movement Speeds Based on EEG
下载PDF
导出
摘要 基于运动想象脑电节律活动的脑-机接口是脑-机接口系统研究中的重要范式之一。本研究给出一种基于运动速度想象的新的研究范式,探索在该研究范式下对运动速度想象具有反应性的脑电节律活动,并进行单次识别。采集了4个健康志愿者想象左手食指快速运动(4 Hz)和慢速运动(1 Hz)时的脑电信号,速度由节拍器定节奏和训练。通过能量谱分析,在C3、Cz和C4通道发现了对运动速度想象具有反应性的频带:9 Hz至13 Hz。提取通道C3、Cz和C4上9 Hz至13 Hz频带能量构建特征空间,分别利用Fisher判别分析和多层感知器神经网络进行运动速度想象的单次识别,对于左手食指快速运动和慢速运动想象,Fisher判别分析和多层感知器神经网络取得的平均误分类率分别是27.7±1.2%,28.4±4.6%,正确识别率均在70%以上。结果表明,尽管运动速度想象的单次识别是一个困难的挑战,但通过精心设计研究范式,适当训练被试,能够诱发出对速度起反应的特征频带,基于脑电单次识别运动速度想象是可行的,该研究可望能够为脑-机接口提供额外的新的速度控制参数。 Brain-computer interface based on EEG rhythmic activities evoked by motor imagery is one of the important paradigms for brain-computer interface systems.A new paradigm based on imagined movement speeds was presented in the study.EEG rhythmic activities reactive to imagined movement speeds were explored and identification of single-trial EEG related to imagined movement speeds was investigated under the new paradigm.EEG signals were acquired from 4 healthy subjects during imagining their left index fingers movement at two speeds(4 Hz and 1 Hz,trained and paced by metronome).A rhythmic frequency band around 9~13 Hz over C3,Cz,and C4 related to imagined movement speeds was detected by spectrum analysis.Feature space was built from the band power of 9~13 Hz at C3,CZ,and C4.Fisher discriminant analysis(FDA) and multi-layer perception neural network(MLP) were applied in single-trial identification of imagined movement speeds respectively.The averaged misclassification rates between fast and slow movement imagination involved in left index fingers with FDA and MLP were 27.7±1.2% and 28.4±4.6% respectively.The accurate recognition rates were above 70%.The results show that although single-trial identification for imagined movement speeds based on EEG is a challenging research,distinctive frequency band activities related to imagined speeds can be evoked by carefully designing research paradigms and properly training subjects,and single-trial identification of imagined movement speeds based on EEG is feasible.The study is expected to provide additional new speed control parameters for brain-computer interface.
出处 《中国生物医学工程学报》 CAS CSCD 北大核心 2011年第4期555-561,共7页 Chinese Journal of Biomedical Engineering
基金 国家自然科学基金青年科学基金(60705021) 机器人学国家重点实验室研究项目(08A120C101)
关键词 脑电 运动速度想象 FISHER判别分析 多层感知器 脑-机接口 EEG imagined movement speed Fisher discriminant analysis multi-layer perception brain-computer interface
  • 相关文献

参考文献23

  • 1高上凯.神经工程与脑-机接口[J].生命科学,2009,21(2):177-180. 被引量:22
  • 2高上凯.基于节律性脑电信号的脑-机接口[J].生命科学,2008,20(5):722-724. 被引量:11
  • 3高上凯.浅谈脑—机接口的发展现状与挑战[J].中国生物医学工程学报,2007,26(6):801-803. 被引量:70
  • 4高上凯.无创高通讯速率的实时脑-机接口系统[J].中国基础科学,2007(3):25-26. 被引量:12
  • 5McFarland D J, Sarnaeki WA, Wolpaw JR. Eleetroenee- phalographic (EEG) control of three-dimensional movement [J]. J Neural Eng., 2010, 7(036007) :1 -9.
  • 6Bradberry TJ, Gentili RJ, Contreras-Vidal JL. Reconstructing three-dimensional hand movements from noninvasive electroencephalographic signals [ J]. J Neurosci, 2010, 30(9) :3432 - 3437.
  • 7Royer AS, Doud AJ, Rose ML, et al. EEG control of a virtual helicopter in 3-Dimensional space using intelligent control strategies [J]. Neural System and Rchab Eng, 2010, 18(6) : 581 -589.
  • 8Allison BZ, Brunner C, Kaiser V, et al. Toward a hybrid brain- computer interface based on imagined movement and visual attention [J]. J Neural Eng, 2010, 7(026007) :1 -9.
  • 9Li Yuanqing, Long Jinyi, Yu Tianyou, et al. An EEG-based BCI system for 2-D cursor control by combining Mu/Beta rhythm and P300 potential [ J]. IEEE Trans Biomed Eng, 2010, 57 (10) : 2495 -2505.
  • 10Blankertz B, Tangermann M, Vidaurre C, et al. The Berlin brain-computer interface: non-medical uses of BCI technology [ J]. Frontiers in Neuroscience/Neuroprosthetics, 2010, 4 ( Article 198 ) : 1 - 17.

二级参考文献45

  • 1Fetz E. Real-time control of a robotic arm by neuronal ensembles. Nat Neurosci, 1999, 2:583--584.
  • 2Donoghue J. Connecting cortex to machines: Recent advances in brain interfaces. Nat Neurosci, 2002, 5(suppl): 1085--1088.
  • 3Pfurtscheller G, Lopes da Silva F. Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin Neurophysiol, 1999, 110(11): 1842--1857.
  • 4Pfurtscheller G, Neuper C, Brunner C, et al. Beta rebound after different types of motor imagery in man. Neurosci Lett, 2005, 378(3): 156--159.
  • 5Ramoser H, Muller-Gerking J, Pfurtscheller G. Optimal spatial filtering of single trial EEG during imagined handmovement. IEEE Transact Neur Syst Rehabilit Eng, 2000, 8(4): 441--446.
  • 6Muller-Gerking J, Pfurtscheller G, Flyvbjerg H. Designing optimal spatial filters for single-trial EEG classification in a movement task. Clin Neurophysiol, 1999, 110:787--798.
  • 7Wang Y, Zhang Z, Li Y, et al. BCI competition 2003-data set IV: An algorithm based on CSSD and FDA for classifying single-trial EEG. IEEE Transact Biomed Eng, 2004, 51(6): 1081--1086.
  • 8URL: http://bcmi.sj tu.edu.cn/-zhaoqibin/demos.html.
  • 9Nicolefis M A L. Actions from thoughts. Nature, 2001, 409(6818): 403--407.
  • 10Wolpaw J R, Birbaumer N, McFarland D J, et al. Brain-computer interfaces for communication and control. Clin Neurophysiol, 2002, 113(6): 767--791.

共引文献102

同被引文献39

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部