期刊文献+

3003铝合金动态再结晶实验研究 被引量:11

Experimental Research on Dynamic Recrystallization of 3003 Aluminum Alloy
下载PDF
导出
摘要 采用Gleeble-1500热模拟试验机对3003铝合金进行变形温度为300~500℃、应变速率为0.01~10.0s-1的高温等温压缩实验,由真应力-真应变曲线计算应变硬化速率,并采用截线法测量热压缩后平均晶粒尺寸,结果表明:3003铝合金动态再结晶临界应变εc随着Z参数的增大而提高,合金发生动态再结晶的临界条件为:ε>εc=7.28×10-5 Z0.1661;动态再结晶的平均晶粒尺寸随温度的升高、应变速率的减小而增大,其关系为:lndave=-0.0824lnZ+4.9532;在实验条件下,该合金具有正的应变速率敏感性,随变形温度的降低和应变速率的增大,合金进入稳态流变阶段时所对应的真应力值逐渐增大,并且峰值应力随动态再结晶平均晶粒尺寸的减小而增大,符合Hall-Petch关系:lnσm=-0.9378lndave+6.5232。 The 3003 aluminum alloy was deformed by isothermal compression in the range of deformation temperature 300-500℃ at strain rate 0.01-10.0s-1 using Gleeble-1500 thermal simulator.The strain-hardening rate could be obtained from true stress-true strain curves,and the recrystallization average grain size was measured using the intercept method.The results show that the critical strain εc increases with parameter Z increasing,the critical conditions for onset of dynamic recrystallization(DRX) is εεc=7.28×10-5Z0.1661.The average recrystallization grain size increases as deformation temperature increases and the strain rate decreases,which can be described as lndave=-0.0824lnZ+4.9532.The investigated alloy is sensitive to positive strain rate under the experimental conditions.The true stress increases as the deformation temperature decreases and the strain rate increases.The peak stress increases with the average recrystallization grain size decreasing,which meets with the law of Hall-Petch: lnσm=-0.9378lndave+6.5232.
出处 《材料工程》 EI CAS CSCD 北大核心 2011年第8期77-81,共5页 Journal of Materials Engineering
基金 福建省自然科学基金资助计划项目(E0610004) 福建省教育厅A类科技项目资助(JA08249)
关键词 3003铝合金 应变硬化速率 动态再结晶 临界应变 平均晶粒尺寸 3003 aluminum alloy strain-hardening rate dynamic recrystallization critical strain average gain size
  • 相关文献

参考文献14

二级参考文献48

  • 1张鑫珩,任瑞良.铝及其合金熔剂技术与TH系列多功能复合熔剂[J].轻合金加工技术,1994,22(11):15-16. 被引量:1
  • 2曾卫东,张麦仓,俞汉清,周义刚.34CrNi3Mo钢高温变形行为与Zener-Hollomon因子的关系[J].锻压技术,1996,21(3):3-6. 被引量:5
  • 3Mordike B L. Magnesium and magnesium alloys [J]. Light Metals, 2001, 51: 215.
  • 4Eliezer D, Aghion E, Froes F H. Recent magnesium developments [A]. Synthesis of Light weight Metals [C]. San Diego CA: The Minerals, Metals & Materials Society, 1999. 139.
  • 5Polmear I J. Magnesium alloys and applications [J ]. Mater. Sci. Tech., 1994, 10: 1.
  • 6Zhang Ya, Zeng Xiaoqing, Lu Chen, Ding Wenjiang. Deformation behavior and dynamic recrystallization of a Mg-Zn-Y-Zr alloy [J]. Materials Science and Engineering, 2006, A428: 91.
  • 7Galiyev A, Kaibyshev R, Gottstein G. Correlation of plastic deformation and dynamic recrystallization in magnesium alloy ZK60 [J]. Acta Mater., 2001, 49: 1199.
  • 8DECKER R F. The renaissance in magnesium[J]. Advanced Mater - Proc, 1998,18(9):31-35.
  • 9FROES F H, ELIEZER D, AGHION E. The science, technology and applications of magnesium[J]. JOM, 1998,20(9) :30-33.
  • 10ION S E, HUMPHREYS F J, WHITE S H. Dynamic recrystallization and the development of mierostrueture during the high temeperature deformation of magnesium[J]. Acta Materialia, 1982, 30(10) : 1909- 1913.

共引文献151

同被引文献111

引证文献11

二级引证文献68

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部