期刊文献+

基于正交展开方法的Duffing振子随机最优控制 被引量:1

Orthogonal expansions based stochastic optimal control of Duffing oscillators
下载PDF
导出
摘要 基于多维Hermite多项式的经典均相混沌展开,考察了Duffing振子随机最优多项式控制的正交展开方法,阐明了多项式系数演化与振子系统反应、最优控制力概率特性之间的联系。系统输入采用Karhunen-Loève展开表现的随机地震动。为降低混求解规模,引入位移-速度范数准则,发展了自适应混沌多项式展开策略。同时,基于Lyapunov稳定条件设计控制器的控制增益参数。数值算例分析表明,受控后系统位移和加速度的均方特征得到改善、振子系统的非线性程度减小,基于混沌多项式展开的最优控制方法能明显降低系统的随机涨落和显著改善系统的非线性反应性态。 An orthogonal expansion of stochastic optimal polynomial control,employing the homogenous chaos decomposition with multidimensional Hermite polynomials of random variable argument,of Duffing oscillators is investigated.It reveals the essential relationship between evolution of polynomial coefficients and probabilistic characteristics of oscillator response and control force.The procedure is demonstrated on a base-driven system whereby the ground motion is modeled as a stochastic process with a specified correlation function and is approximated by its Karhunen-Loève expansion.An adaptive scheme based on a displacement-velocity norm for stochastic approximation with polynomial chaos bases is proposed towards reducing computational effort,which is applied to the identification of phase orbits of nonlinear oscillators.This approximation is then integrated into the design of an optimal polynomial controller,allowing for the efficient estimation of statistics and probability density functions of quantities of interest.Numerical investigations are carried out employing the polynomial chaos expansion and the Lyapunov asymptotic stability condition based control policy.The results reveal that the performance,as gaged by probabilistic quantities of interest,of the controlled oscillators is greatly improved.It is remarked that the proposed polynomial chaos expansion is a preferred approach to the optimal control of nonlinear random oscillators.
作者 彭勇波 李杰
出处 《振动工程学报》 EI CSCD 北大核心 2011年第4期333-339,共7页 Journal of Vibration Engineering
基金 国家自然科学基金委创新研究群体科学基金资助项目(50621062) 土木工程防灾国家重点实验室探索性研究课题资助项目(SLDRCE11-B-04) 同济大学青年优秀人才培养行动计划资助项目(2010KJ065)
关键词 随机最优控制 DUFFING振子 自适应混沌多项式 地震动 Karhunen-Loève展开 stochastic optimal control Duffing oscillators adaptive polynomial chaos earthquake ground motion Karhunen-Loève expansion
  • 相关文献

参考文献12

  • 1Cameron R H, Martin W T. The orthogonal develop- ment of non-linear functional in series of Fouier-Her-mite functional [J ]. Annuals of Mathematics, 194:7, 48:385-392.
  • 2Ghanem R, Spanos P. Stochastic Finite Elements: A Spectral Approach[M]. New York: Springer, 1991.
  • 3Monti A, Ponci F, Lovett T. A polynomial chaos theory approach to the control design of a power con- verter[A]. Proceedings of 35th Annual IEEE Power Electronics Specialists Conference 2004[C]. Aachen,Germany, 2004:4 809-4 813.
  • 4Hover F S, Triantafyllou M S. Application of polyno- mial chaos in stability and control[J]. Automatica, 2006,42 : 789-795.
  • 5Chen J B, Liu W Q, Peng Y B, et al. Stochastic seis- mic response and reliability analysis of base-isolated structures [J]. Journal of Earthquake Engineering, 2007,11:903-924.
  • 6彭勇波,李杰.非线性随机动力系统的最优多项式控制[J].振动工程学报,2010,23(4):366-372. 被引量:2
  • 7Anderson Brian D O, Moore J. Optimal Control: Lin- ear Quadratic Methods [M]. Prentice-Hall, Engle- wood Cliffs, 1990.
  • 8Li J, Peng Y B, Chen J B. A physical approach to structural stochastic optimal controls[J]. Probabilis-tic Engineering Mechanics, 2010,25,127-141.
  • 9Loeve M. Probability Theory Ⅰ [M]. 4th Edition . New York : Springer, 1978.
  • 10Debusschere B J, Najm H N, Pebay P P, et al. Nu- merical challenges in the use of polynomial chaos rep- resentations for stochastic processes[J]. SIAM Jour- nal on Scientific Computing, 2004,26 (2) : 698-719.

二级参考文献10

  • 1李杰,艾晓秋.基于物理的随机地震动模型研究[J].地震工程与工程振动,2006,26(5):21-26. 被引量:56
  • 2Shefer M, Breakwell J V. Estimation and control with cubic nonlinearities[J]. Journal of Optimization Theory Applications, 1987,53 : 1-7.
  • 3Yang J N, Li Z, Vongchavalitkul S. Generalization of optimal control theory: linear and nonlinear control [J]. ASCE Journal of Engineering Mechanics, 1994, 120(2):266-283.
  • 4Zhu W Q, Ying Z G, Ni Y Q, et al. Optimal nonlin- ear stochastic control of hysteretic systems[J]. ASCE Journal of Engineering Mechanics, 2000, 126 (10): 1 027-1 032.
  • 5Li J, Peng Y B, Chen J B. A physical approach to structural stochastic optimal controls[J].Probabilistic Engineering Mechanics, 2010,25 : 127-141.
  • 6Suhardjo J, Spencer Jr B F, Sain M K. Nonlinear optimal control of a Duffing system[J]. International Journal of Non-linear Mechanics, 1992,27 (2) : 157- 172.
  • 7Yang J N, Agrawal A K, Chen S. Optimal polynomial control for seismically excited non-linear and hysteretic structures [J]. Earthquake Engineering and Structural Dynamics, 1996,25 : 1 211-1 230.
  • 8Anderson Brian D O, Moore J. Optimal Control: Linear Quadratic Methods [M].Prentice-Hall, Englewood Cliffs, 1990.
  • 9Li J, Chen J B. The principle of preservation of probability and the generalized density evolution equation[J]. Structural Safety, 2008,30:65-77.
  • 10Chen J B, Li J. Strategy for selecting representative points via tangent spheres in the probability density evolution method[J]. International Journal for Numerical Methods in Engineering, 2008, 74 ( 13 ): 1 988-2 014.

共引文献1

同被引文献7

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部