摘要
研究癌症浸润趋触模型中具有基质重组功能的解的渐近行为.利用数学模型及微积分理论,在对模型初值以及参数的严格假设下,运用检验函数以及微积分理论,证明了当时间趋于无穷大时,系统的整体解按指数收敛到非零的空间一致稳定态,对渐近行为的研究更有意义.
Asymptotic behaviour of solutions to a haptotaxis model of cancer invasion with tissue regeneration was considered.With mathematical model and calculus theory,under some restricative assumptions on the initial data and the parameters of the model,testing functions and calculus theory were used,the global solution converges to a non-zero spatially uniform steady state exponentially as time goes to infinity was proved.
出处
《纺织高校基础科学学报》
CAS
2011年第2期217-223,共7页
Basic Sciences Journal of Textile Universities
关键词
趋触性
癌症浸润
组织修复
渐近行为
haptotaxis
cancer invasion
tissue regeneration
asymptotic behaviour