摘要
自仿测度μM,D是由{d(x)=M-1(x+d)}d∈D惟一确定的.对于扩张矩阵M∈Mn(Z)即M=[ad bc],D={(00),(10),(20),(11)},且ac-bd∈2Z,通过讨论其自仿测度的Fourier变换零点的性质,得出这个特殊的L2(μM,D)空间上的指数正交系的个数.
The self-affine measures is decided by{d(x)=M-1(x+d)}d∈ D.When M∈Mn(Z),M=[ad bc],D={(00),(10),(20),(11)},and ac-bd∈2Z,by discussing the properties of the zero points of the self-affine measure's fourier transform,the number of orthogonal exponentials in a special L2(μM,D) space is obtained.
出处
《纺织高校基础科学学报》
CAS
2011年第2期234-237,共4页
Basic Sciences Journal of Textile Universities
基金
国家自然科学基金资助项目(10871123)
关键词
迭代函数系
自仿测度
指数正交系
谱
iterated function system
self-affine measures
orthogonal exponentials
spectrality