期刊文献+

完全多部图的拉普拉斯特征多项式 被引量:8

The Laplacian polynomial of complete multipartite graphs
下载PDF
导出
摘要 研究拉普拉斯整图的存在性问题.用A(G)表示有n个顶点的简单图G的邻接矩阵,D(G)表示图G的顶点度对角矩阵.图G的拉普拉斯矩阵为L(G)=D(G)-A(G).通过研究完全多部图Kp1,p2,…,pr的拉普拉斯特征多项式,得到了所有的完全多部图Kp1,p2,…,pr都是拉普拉斯整图. The existence problem of Laplacian integral graphs is studied.Let A(G) denotes the adjacency matrix of graph G with n vertices and D(G) denotes the degree diagonal matrix of graph G.The Laplacian matrix of graph G is L(G)=D(G)-A(G).By studying the Laplacian characteristic polynomial of the complete multipartite graph Kp1,p2,…,pr,it is obtained that all the complete multipartite graphs Kp1,p2,…,pr are Laplacian integral.
出处 《纺织高校基础科学学报》 CAS 2011年第2期243-245,共3页 Basic Sciences Journal of Textile Universities
基金 国家自然科学基金资助项目(10871158) 陕西省自然科学基础研究计划项目(SJ08A01) 教育部回国留学人员科研基金资助
关键词 拉普拉斯多项式 完全多部图 拉普拉斯整图 Laplacian polynomial complete multipartite graph Laplacian integral
  • 相关文献

参考文献1

二级参考文献8

  • 1Bondy J A, Murty U S R. Graph Theory with Applications[ M ]. New York : Macmillan, 1976.
  • 2Cvetkovic D, Doob M, Sachs H. Spectra of Graphs-Theory and Application[ M ]. New York : Academic Press, 1980.
  • 3Haemers W, Spence E. Enumeration of cospectral graphs [ J ]. Europ J Comb,2004,25 : 199 - 211.
  • 4Harary F, Schwenk A J. Which graphs have integral spectral ? [J]. Berlin : Springer - Verlay : 1974.
  • 5Wang L G,Li X L, Hoede C. Integral complete r-partite graphs[ J]. Discrete Math,2004,283:231 -241.
  • 6Cvetkovie D, Rowlinson P, Simic S K. Signless Laptacians of finite graphs[ J ]. Linear Algebra Appl,2007,432 : 155 - 171.
  • 7Cvetkovic D, Rowlinson P, Simic S K. Eigenvalue bounds for the signless Laplacians[ J ]. Pub De L Math,2007,95 (81 ) :11 - 27.
  • 8Simic S K,Stanie Z. Q-integral graphs with edge-degrees at most five[ J]. Discrete Math,2008,308:4625 -4634.

共引文献4

同被引文献49

  • 1张捷,邓汉元.一类新的等可分树和化学树[J].数学的实践与认识,2006,36(9):195-199. 被引量:3
  • 2RANDIC M. On dissection of acyclic graphs[J]. MATCH Communications in Mathematical and in Computer Chemis- try, 1979(5) : 135-148.
  • 3RANDIC M, GUO X, CALKINS P. Graph dissetion revisited: Application to smaller Alikanes[J]. Acta Chimica Sloven- ica, 2000(47) : 489-506.
  • 4BERTZ S H. Branching in graphs and molecules[J]. Discrete Appl Math,1988(19):65-83.
  • 5RANDIC M,WOODWORTH W L. Characterization of acyclic graphs by successive dissection[J]. MATCH Communi- cations in Mathematical and in Computer Chemistry, 1982 (13) : 291-313.
  • 6XU Z,WU B,GUO X. On dissection of graphs[J]. MATCH Communications in Mathematical and in Computer Chem- istry, 2006 (56) : 519-526.
  • 7BONDY J A, MURTY U S R. Graph theory with application[M]. London: Elsevier, 1976.
  • 8WANG X,DUAN F. On dissectoin of unicyclic graphs[J]. Journal of East China Normal University: Natural Science, 2009(143) : 13-21.
  • 9ZHANG L,WU B. The Nordhaus-Goddum-type inequalities for some chemical indices[J]. MATCH Communications in Mathematical and in Computer Chemistry, 2005,54 : 189-194.
  • 10WU B F,XIAO E L, HONG Y. The spectral radius of trees on k pendent vertices[J]. Linear Algebra and its Applica- tion, 2005,395 : 343-349.

引证文献8

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部