摘要
k∈N+,1<k≤9,数列{a(k,n)}称作Smarandache kn数字数列,如果该数列中的每一个数都可以分成两部分,那么第二部分是第一部分的k倍.例如3n数字数列{a(3,n)}定义为{13,26,39,412,515,618,721,824,…}.利用初等及组合方法研究Smarandache kn数字数列的一类均值性质,并给出几个有趣的渐近公式.
For any positive integer 1k≤9,the sequences {a(k,n)} is called the Smarandache kn-digital sequence,if the digital of a(k,n) can be partitioned into two groups such that the second is k times bigger than the first.For example,{a(3,n)}={13,26,39,412,515,…} is called the Smarandache 3n-digital sequence.One kind mean value of the Smarandache kn-digital sequence is studied by the elementary and combinational method,and severel interesting asymptotic formulas are given.
出处
《纺织高校基础科学学报》
CAS
2011年第2期250-252,269,共4页
Basic Sciences Journal of Textile Universities
基金
国家自然科学基金资助项目(11071194)
陕西省教育厅专项基金资助项目(08JK433)