期刊文献+

Smarandache kn数字数列及其一类均值性质 被引量:5

The Smarandache kn-digital sequence and its mean value properties
下载PDF
导出
摘要 k∈N+,1<k≤9,数列{a(k,n)}称作Smarandache kn数字数列,如果该数列中的每一个数都可以分成两部分,那么第二部分是第一部分的k倍.例如3n数字数列{a(3,n)}定义为{13,26,39,412,515,618,721,824,…}.利用初等及组合方法研究Smarandache kn数字数列的一类均值性质,并给出几个有趣的渐近公式. For any positive integer 1k≤9,the sequences {a(k,n)} is called the Smarandache kn-digital sequence,if the digital of a(k,n) can be partitioned into two groups such that the second is k times bigger than the first.For example,{a(3,n)}={13,26,39,412,515,…} is called the Smarandache 3n-digital sequence.One kind mean value of the Smarandache kn-digital sequence is studied by the elementary and combinational method,and severel interesting asymptotic formulas are given.
作者 苟素
出处 《纺织高校基础科学学报》 CAS 2011年第2期250-252,269,共4页 Basic Sciences Journal of Textile Universities
基金 国家自然科学基金资助项目(11071194) 陕西省教育厅专项基金资助项目(08JK433)
关键词 Smarandachekn数字数列 初等方法 组合方法 均值 渐近公式 the Smarandache kn-digital sequence elementary method combinational method mean value asymptotic formula
  • 相关文献

参考文献8

二级参考文献24

  • 1徐哲峰.Smarandache函数的值分布性质[J].数学学报(中文版),2006,49(5):1009-1012. 被引量:88
  • 2LIU Yah-hi.On the Smarandache Pseudo Number Sequence[J].Chinese Quarterly Journal of Mathematics,2006,21(4):581-584. 被引量:7
  • 3Smarandache F.Only Problems,Not Solutions[M].Chicago:Xiquan Publishing House,1993.
  • 4Smarandache F.Sequences of Numbers Involved in Unsolved Problems[M].Hexis,2006.
  • 5Nan Wu.On the Smarandache 3n-digital sequence and the Zhang Wenpeng's conjecture[J].Scientia Magna,2008,4(4):120-122.
  • 6Tom M.Apostol.Introduction to Analytical Number Theory[M].New York:Spring-Verlag,1976.
  • 7潘承洞 潘承彪.初等数论[M].北京:北京大学出版社,2003..
  • 8SMARANDACH E F. Only problems, not solutions[ M]. Chicago: Xiquan Publishing House, 1993.
  • 9FARRIS Mark, MITCHELL Patrick. Bounding the Smarandache function[J]. Smarandache Nations Journal, 2002,13: 37-42.
  • 10WANG Yongxing. On the Smarandache function[C]//ZHANG Wenpeng, LI Junzhuang, Liu Duansen. Research on Smarandache Problem In Number Theory. Phoenix: Hexis,2005:103-106.

共引文献9

同被引文献34

  • 1徐哲峰.Smarandache函数的值分布性质[J].数学学报(中文版),2006,49(5):1009-1012. 被引量:88
  • 2SMARANDACHE F.Only problem,not solution[M].Chicago:Xiquan Publishing House,1993.
  • 3KENICHIRO Kashihara.Comments and topics on Smarandache notions and problems[M].Phoenix:Erhus University Press,1996.
  • 4刘燕妮,李玲,刘宝利.Smarandache未解决的问题及其新进展[M].Phoenix:High American Press,2008.
  • 5VYAWAHARE A W,PUROHIT K M.Near pseudo Smarandache function[J].Smarandache Notions Journal,2004,14:36-61.
  • 6APOSTOL T M.Introduction to analytic number theory[M].New York:Springer-Verlag,1976.
  • 7闵嗣鹤 严士健.初等数论[M].北京:高等教育出版社,1982..
  • 8吕忠田.关于F.Smarandache函数与除数函数的一个混合均值[J].纺织高校基础科学学报,2007,20(3):234-236. 被引量:6
  • 9MURTHY Amarnath, ASHBACHER Charles. Generalized partitionsand new ideas on number theory and Smarandache sequences[M]. Hexis: Phoenix, 2005 : 87.
  • 10SMARANDACHE F. Only problems,not solutions[M]. Chicago:Xiquan Publishing House, 1993:23.

引证文献5

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部