期刊文献+

ω-Conway半环与ω-归纳~*-半环

ω -Conway semirings and ω-inductive~*-semirings
下载PDF
导出
摘要 引入了ω-Conway半环与ω-归纳*-半环的概念,并且研究了它们的性质.得到了ω-归纳*-半环是ω-Conway半环.对ω-归纳*-半环的形式幂级数半环进行了讨论.结果表明,ω-Conway半环(ω-归纳*-半环)的矩阵半环仍然是ω-Conway半环(ω-归纳*-半环). The concepts of ω-Conway semirings and ω-inductive*-semirings are introduced,and their properties are studied.It is obtained that ω-inductive*-semirings are ω-Conway semirings.The semirings of formal power series of ω-inductive*-semirings are discussed.It is proved that the matrix semirings of ω-Conway semirings(ω-inductive*-semirings) are also ω-Conway semirings(ω-inductive*-semirings).
机构地区 西北大学数学系
出处 《纺织高校基础科学学报》 CAS 2011年第2期256-260,共5页 Basic Sciences Journal of Textile Universities
基金 陕西省教育厅专项基金资助项目(07JK413) 西北大学科学研究基金资助项目(NC0925)
关键词 ω-Conway半环 ω-归纳*-半环 形式幂级数 ω-Conway semirings ω-inductive*-semirings formal power series
  • 相关文献

参考文献2

  • 1Z. Esik,W. Kuich. On Iteration Semiring-Semimodule Pairs[J] 2007,Semigroup Forum(1):129~159
  • 2冯立,杨琳.一些半环半模对[J].纺织高校基础科学学报,2009,22(4):523-528. 被引量:1

二级参考文献9

  • 1BLOOM S L,ZOLTAN Esik. Iteration theories:the equation logic of iterative processes [ C ]. EATCS Monographs on Theoretical Computer. Science New York: Spring-Verlag, 1993.
  • 2ZOLTAN Esik,WERNER Kuich. On iteration semiring-semimodule pairs [ J ]. Semigroup Forum, 2007,75 : 129-159.
  • 3FENG Feng, ZHAO Xianzhong, JUN Yongbae. *-μ-semirings and * -λ-semirings[ J]. Theor Comput Sci, 2005,347:423- 431.
  • 4ZHAO Xianzhong. Locally closed semirings and iteration semirings[J]. Monatsh Math,2005,144:157-167.
  • 5CONWAY J C. Regular algebra and finite machines[ M]. London: London Chapman and Hall,1971.
  • 6CONWAY J C. Regular algebra and finite machines[ M]. London: London Chapman and Hall,1971.
  • 7FENG Feng, JUN Yongbae, ZHAO Xianzhong. On * -λ-semirings[ J]. Information Sciences,2007,177:5 012-5 023.
  • 8BLOOM S L,ZOLTAN Esik. Matrix and matrical iteration theories, part I[ J ]. J Comput Syst Sci, 1993,46:381-408.
  • 9MARKOWSKY G. Chain-complete posets and directed sets with applications[ J ]. Algebra Universalis, 1976,6:53-68.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部