期刊文献+

关联规则挖掘在超市销售系统中的应用及实现 被引量:1

Application and Implementation of Association Rules Exploited from the Selling System of Supermarkets
下载PDF
导出
摘要 超市购物篮分析是关联规则挖掘的典型应用领域,分析了关联规则在超市销售系统中的应用,然后提出了一种基于二维数组的关联规则挖掘实现算法,并根据算法开发实现了挖掘系统。通过模拟的超市销售数据进行试验表明,算法及所实现的系统是可行的、高效的。 Shopping-basket analysis is a typical application area for exploiting association rules. First, this paper analyzes the application of association rules in the supermarkets. Then, it proposes an association exploiting algorithm which is based on two-dimensional array. Finally, it realizes an exploiting system by using this algorithm. The test based on sales data of a supermarket shows that the algorithm and the system is reasonable and efficient.
机构地区 梧州学院
出处 《梧州学院学报》 2011年第3期59-63,共5页 Journal of Wuzhou University
基金 广西教育厅科研立项(200708MS056) 梧州学院科研项目(2007C006)
关键词 关联规则 超市销售 二维数组 association rules supermarket's sale two dimensional array
  • 相关文献

参考文献7

二级参考文献19

  • 1闫莺,王大玲,于戈.支持个性化推荐的Web页面关联规则挖掘算法[J].计算机工程,2005,31(1):79-81. 被引量:19
  • 2Agrawal R, Imielinski T, Swami A. Mining association rules between sets of items in large databases. In: Proceedings of the ACM SIGMOD International Conference on Management of Data. Washington D.C., USA: ACM, 1993. 207-216
  • 3Geng L Q, Hamilton H J. Interestingness measures for data mining: a survey. ACM Computing Surveys, 2006, 38(3): 1-33
  • 4Mielikainen T, Mannila H. The pattern ordering problem. In: Proceedings of the 7th European Conference on Principles and Practice of Knowledge Discovery in Databases. Cavtat-Dubrovnik, Croatia: Springer, 2003. 327-338
  • 5Bastide Y, Pasquier N, Taouil R, Stumme G, Lakhal L. Mining minimal non-redundant association rules using frequent closed itemsets. In: Proceedings of the 1st International Conference on Computational Logic. Berlin, German: Springer, 2000. 972-986
  • 6Chen G Q, Wei Q, Liu D, Wets G. Simple association rules (SAR) and the SAR-based rule discovery. Computers and Industrial Engineering, 2002, 43(4): 721-733
  • 7Kryszkiewicz M. Representative association rules and minimum condition maximum consequence association rules. In: Proceedings of the 2nd European Symposium on Principles of Data Mining and Knowledge Discovery. Nantes, France: Springer, 1998. 361-369
  • 8Li G, Hamilton H J. Basic association rules. In: Proceedings of the 4th SIAM International Conference on Data Mining. Orlando, USA: 2004. 166-177
  • 9Liu B, Zhao K D, Jeffrey B, Xiao W M. Rule interestingness analysis using OLAP operations. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Philadelphia, USA: ACM, 2006. 297-306
  • 10[1]Agrawal R,Imielinski T,Swami A.Aperformance perspective.Transactions on Knowledgeand Data Engineering[J].Database mining,1993(5):914-925.

共引文献36

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部