摘要
对于n∈N+,设a(n)表示n的多角形数加法补数部分,即a(n)是使n+a(n)为一多角形数(1/2)(2m+(r-2)m(m-1)),m∈N的最小的非负整数.运用初等方法研究了多角形数加法补数级数的敛散性以及均值性质,给出它的渐近公式.
For arbitary n∈N+,let a(n) denotes the polygonal number additive complement.That is to say,for any fixed positive integern,a(n) is the smallest nonnegative integer number such that n+a(n) is a polygonal number(1/2)(2m+(r-2)m(m-1)).In this paper,the convergent property and asymptotic property of the polygonal number additive complement sequence are studied using the elementary method,and an asymptotic formula is obtained.
出处
《西安工程大学学报》
CAS
2011年第3期415-417,共3页
Journal of Xi’an Polytechnic University
基金
陕西省教育厅科研基金项目(2010JK540)
关键词
多角形数
加法补数
渐近公式
polygonal number
additive complement
asymptotic formula