期刊文献+

奇异(k,n-k)共轭多点边值问题方程组的正解 被引量:3

Positive solutions to system of singular(k,n-k) conjugate multi-point boundary value problems
下载PDF
导出
摘要 对固定的1≤k≤n-1,运用锥拉伸与锥压缩不动点定理,研究了具有奇性的(k,n-k)共轭多点边值问题方程组正解的存在性。 As 1≤k≤n-1, by using the fixed-point theorem of cone expansion and compress, the existence of positive solutions to a system of singular (k, n-k) conjugate multi-point boundary value problems is studied.
出处 《河北科技大学学报》 CAS 北大核心 2011年第4期303-307,共5页 Journal of Hebei University of Science and Technology
关键词 奇异 (k n-k)共轭多点边值问题 正解 不动点定理 singular (k, n- k) conjugate multi-point boundary value problem positive solutions fixed-point theorems
  • 相关文献

参考文献9

  • 1JIANG Da-qing, LIU Hui-zhao. Existence of positive solutions to (k, n-k) conjugate boundary value problems[J]. Kyushu J Math, 1999, 53(1):115-125.
  • 2蒋达清.奇异(k,n-k)共轭边值问题的正解[J].数学学报(中文版),2001,44(3):541-548. 被引量:19
  • 3张国伟,孙经先.奇异(k,n-k)多点边值问题的正解[J].数学学报(中文版),2006,49(2):391-398. 被引量:11
  • 4XI Shou-liang, JIA Mei,JI H ui-Peng. Positive solutions of boundary value problems for systems of second-order differential equations with integral boundary condition on the half-line[J]. Electronic Journal of Qualitative Theory of Differential Equations,2009,31:1-13.
  • 5HU Ling,WANG Liang-long. Multiple positive solutions of boundary value problems for systems of nonlinear second-order differential equations[J]. J Math Anal Appl, 2007,335:1 052-1 060.
  • 6JIANG Wei-hua,CHEN Zhi-hong. Positive solutions for systems of two-point (k, n-k) conjugate boundary value problems [A]. 2010 First International Conference on Cellular, Molecular Biology,Biophysics and Bioengineering[C]. [s. L. ] :[s. n. ]2010. 420-422.
  • 7KRASNOSELSKII M. Positive Solutions of Operator Equations[M]. Groningen.. Noordhoof, 1964.
  • 8王斌,江卫华,黄晓芹,李国刚.带有p-Laplacian算子的二阶微分方程组多个正解的存在性[J].河北科技大学学报,2011,32(1):15-19. 被引量:2
  • 9董士杰,周长杰.带p-Laplacian算子时滞微分方程多点边值问题的正解[J].河北科技大学学报,2010,31(5):385-389. 被引量:2

二级参考文献20

  • 1Guo-weiZhang,Jing-xianSun.Existence of Positive Solutions for Singular Second-order m-Point Boundary Value Problems[J].Acta Mathematicae Applicatae Sinica,2004,20(4):655-664. 被引量:23
  • 2CARVALHO L A,LADEIRA L A,MARTELLI M.Forbidden periods in delay differential equations[J].Portugaliae Math Port Math,2000,57:259-271.
  • 3HALE J K,HUANG W.Global geometry of stable regions for two delay differential equations[J].J Math Anal Appl,1993,178:344-362.
  • 4LI Y,KUANG Y.Periodic solutions in periodic state-dependent delay equations and population models[J].J Math Anal Appl,2001,255:265-280.
  • 5BAI D,XU Y.Positive solutions of second-order two delay differential systems with twinparameter[J].Nonlinear Anal,2005,63:601-617.
  • 6WANG Y,ZHAO W,GE W.Multiple positive solutions for boundary value problems of secondorder delay differential equations with one-dimensional p-Laplacian[J].J Math Anal Appl,2007,326:641-654.
  • 7JIANG D,WANG J.On boundary value problems for singular second-order functional differential equations[J].J Comput Appl Math,2000,116:231-241.
  • 8JIANG D.Multiple positive solutions for boundary value problems of second-order delay differential equations[J].Appl Math Lett,2002,15:575-583.
  • 9JIANG D,XU X,O' REGAN D,et al.Existence theory for single and multiple solutions to singular positone boundary value problem for the delay one-dimensional p-Laplacian[J].Ann Polon math,2003,81:237-259.
  • 10SHU X,XU Y.Triple positive solutions for a class of boundary value problems of second-order functional differential equations[J].Acta Mathematica Sinica (Chinese Series),2005,48:1 113-1 120.

共引文献22

同被引文献35

  • 1索秀云,郭少聪,张继叶,郭彦平.四阶非局部边值问题方程组正解的存在性[J].河北科技大学学报,2012,33(3):197-201. 被引量:3
  • 2刘玉敬,郭少聪,郭彦平.带有积分边值条件的三阶边值问题正解的存在性[J].河北科技大学学报,2012,33(2):93-96. 被引量:5
  • 3BAINOV D D, SIMEONOV P S. Impulsive Differential Equations: Periodic Solutions and Applications[M]. Harlow: Longman Science and Technical, 1993.
  • 4BAINOV D D, SIMEONOV P S. Systems with Impulse Effect[M]. Chichister: Eillis Horwood, 1989.
  • 5LI L J, CABACA A, LIZ E. Boundary value problems for higher ordinary differential equations with impulse[J]. Nonlinear Analysis, 1998, 32: 775-786.
  • 6JANKOWSKI T. Positive solutions of three point boundary value problems for second order impulsive differential equations with advanced arguments[J]. Appl Math Comput, 2008, 197: 179-189.
  • 7YAN Ju rang. Existence of positive periodic solutions of impulsive functional differential equations with two parameters[J]. J Math Anal Appl, 2007, 327: 854-868.
  • 8LAKSHMIKANTHAM V, BAINOV D D,SIMEONOV P S. Theory of impulsive differential equations[M]. Singapore: World Scientific, 1989.
  • 9GUO Yan-ping, GE Wei-gao. Positive solutions for three point boundary value problems with dependence on the first order derivative[J]. J Math Anal Appl, 2004, 290: 291-301.
  • 10LI Jian-li, SHEN Jian-hua. Multiple positive solutions for a second-order three point boundary value problem[J]. Appl Math Comput, 2006, 182: 258-268.

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部