期刊文献+

单分散水性硫普罗宁包覆金纳米粒子可控制备

Controlled synthesis of well-dispersed Au nanoparticles passivated by tiopronin
原文传递
导出
摘要 利用紫外-可见光谱(UV-vis)、X衍射(X-ray Diffraction,XRD)和透射电子显微镜(Transmission Electron Microscope,TEM)等研究小尺寸水溶性金纳米粒子的可控制备.在乙酸和甲醇(体积比为1:6)的混合系统中,通过NaBH4对三水氯金酸还原,将硫普罗宁分子包覆到金纳米粒子表面,得到尺寸可控、稳定的硫普罗宁包覆的金纳米粒子水溶胶.通过控制金与硫普罗宁的摩尔比(Au/S比),金纳米粒子的尺寸能够在2~8nm范围内得到有效控制.本文中,当Au/S比分别为1:3,1:1和3:1时,所合成的金纳米粒子的尺寸分别为(2.8±0.3),(4.0±0.3),(6.1±0.4)nm. In this paper,a simple method was presented to synthesize well-dispersed Au nanoparticles in acetic acid and methanol mixture solution(volume ratio=1:6).In this study,HAuCl4.3H2O was reduced by NaBH4,and Au particle was caped by tiopronin.The X-ray diffraction(XRD),UV-visible spectra and transmission electron microscope(TEM) results demonstrated that the as-synthesized Au nanoparticles were well-dispersed and very stable.By adjusting the ratio of Au to S(tiopronin),Au particles with different size were prepared.When Au/S was 1:3,1:1 and 3:1,respectively,the size of as-synthesized Au nanoparticle was(2.8±0.3),(4.0±0.3) and(6.1±0.4) nm,respectively.
出处 《中国科学:物理学、力学、天文学》 CSCD 北大核心 2011年第9期1036-1040,共5页 Scientia Sinica Physica,Mechanica & Astronomica
基金 天津市应用基础与前沿技术研究计划(编号:2009JCYBJC27200) 国家重点基础研究发展计划(编号:2009CB930200)资助项目
关键词 硫普罗宁 金纳米粒子 可控制备 Tiopronin Au nanoparticles controlled synthesis
  • 相关文献

参考文献3

二级参考文献34

  • 1LI HongJian 1,2 , FU ShaoLi 1 , XIE SuXia 1,2 , XU HaiQing 1 , ZHOU Xin 1,2 & WU JinJun 1 1 College of Physics Science and Technology, Central South University, Changsha 410083, China,2 College of Materials Science and Engineering, Central South University, Changsha 410083, China.Induced electric fields and plasmonic interactions between a metallic nanotube and a thin metallic film[J].Science China(Physics,Mechanics & Astronomy),2010,53(1):38-43. 被引量:3
  • 2Duan X F, Huang Y, Agarwal R, et al. Single-nanowire electrically driven lasers. Nature, 2003, 421:241-245.
  • 3Carrillo A, Swartz J A, Gamba J M, et al. Noncovalent functionalization of graphite and carbon nanotubes with polymer multilayers and gold nanoparticles. Nano Lett, 2003, 3:1437-1440.
  • 4Ravindran S, Bozhilov K N, Ozkan C S. Self assembly of ordered artificial solids of semiconducting ZnS capped CdSe nanoparticles at carbon nanotube ends. Carbon, 2004, 42:1537-1542.
  • 5Liu L, Wang T, Li J, et al. Self-assembly of gold nanoparticles to carbon nanotubes using a thiol-terminated pyrene as interlinker. Chem Phys Lett, 2002, 367:747-752.
  • 6Osterloh F E, Martino J S, Hiramatsu H, et al. Stringing up the pearls: Self-assembly, optical and electronic properties of CdSe- and Au-LiMo3Se3 nanoparticle-nanowire composites. Nano Lett, 2003, 3: 125-129.
  • 7Penner R M. Mesoscopic metal particles and wires by electrodeposition. J Phys Chem B, 2002, 106:3339-3353.
  • 8Wang S, Mamedova N, Kotov N A, et al. Antigen/antibody immunocomplex from CdTe nanoparticle bioconjugates. Nano Lett, 2002, 2:817-822.
  • 9Zanchet D, Micheel C M, Parak W J, et al. Electrophoretic and structural studies of DNA-directed Au nanoparticle groupings. J Plays Chem B. 2002. 106:11758-11763.
  • 10Maxwell D J, Taylor J R, Nie S. Self-assembled nanoparticle probes for recognition and detection of biomolecules. J Am Chem Soc, 2002, 124:9606-9612.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部