期刊文献+

旋转设备声学故障特征提取与优化方法 被引量:4

Acoustical Fault Feature Extraction and Optimization of Rotating Machinery
原文传递
导出
摘要 针对旋转设备原始故障特征空间中存在的冗余特征问题,提出一种基于支持向量数据描述(SVDD)和遗传算法的故障特征优化方法.通过理论和实验分析构造了相对完备的设备声学故障特征空间;依据特征可分离性评价准则和SVDD识别率从原始故障样本数据集中提取出先验知识,指导种群的初始化;以类内-类间距离判据和故障分类器的识别率评价种群中个体的适应度,在此基础上建立改进的遗传算法搜索最优故障特征子集.基于转子振动台所模拟的不平衡故障实验样本数据集,验证了该方法的有效性. To eliminate redundant features in original fault feature space, a novel feature selection algorithm based on support vector data description (SVDD) and modified genetic algorithm is proposed. Firstly, it constructs a complete acoustical fault feature space through theoretic analysis and experiments. According to established criterion of feature separation and SVDD classifier prediction accuracy, prior knowledge is extracted from training data set and used as initialization to improve the efficiency of genetic algorithm. Inner and intra-class distance criterion and classifier prediction accuracy arc introduced to establish fitness function and evaluate the degree of importance of every gene, thus the optimized feature subset is obtained. Experiments with unbalance-fault data set simulated on rotor vibration test-bed show that the proposed algorithm can improve the diagnosis accuracy.
出处 《北京邮电大学学报》 EI CAS CSCD 北大核心 2011年第4期70-74,126,共6页 Journal of Beijing University of Posts and Telecommunications
关键词 故障诊断 特征选取 遗传算法 支持向量数据描述 fault diagnosis feature selection genetic algorithm support vector data description
  • 相关文献

参考文献7

  • 1Wei H L, Billings S A. Feature subset selection and ranking for data dimensionality reduction [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(1) : 162-166.
  • 2Robnik-Sikonja M, Kononenko I. Theoretical and empirical analysis of ReliefF and RReliefF[J]. Machine Learning, 2003, 53: 23-69.
  • 3Guyon I, Weston J, Barnhill S, etal. Gene selection for cancer classification using support vector machines [ J ]. Machine Learning, 2002, 46 (1-3) : 389-422.
  • 4Liu J, Ranka S, Kahveci T. Classification and feature selection algorithms for multi-class CGH data[ J]. Bioinformatics, 2008, 24: 186-195.
  • 5孙跃鹏,刘民,郝井华,吴澄.基于SVM特征选择的整经轴数预测算法[J].北京邮电大学学报,2009,32(6):88-92. 被引量:3
  • 6Huang J, Cai Y, Xu X. A hybrid genetic algorithm for feature selection wrapper based on mutual information [ J].Pattern Recognition Letters, 2007, 28 : 1825-1844.
  • 7Tax D M J, Duin R P W. Support vector domain description [ J ]. Pattern Recognition Letters, 1999, 20 (11-13) : 1191-1199.

二级参考文献10

共引文献2

同被引文献40

  • 1罗忠辉,薛晓宁,王筱珍,吴百海,何真.小波变换及经验模式分解方法在电机轴承早期故障诊断中的应用[J].中国电机工程学报,2005,25(14):125-129. 被引量:67
  • 2朱翔,李天匀,赵耀,魏强.船舶辅机舱振动与声辐射计算及实验研究[J].华中科技大学学报(自然科学版),2005,33(10):19-21. 被引量:7
  • 3薛玮飞,陈进,李加庆,张桂才,雷宣扬.机械噪声故障特征提取的波叠加法[J].机械科学与技术,2006,25(9):1105-1108. 被引量:9
  • 4贺无名.语音识别技术及其研究进展[J].中国科技信息,2006(18):157-158. 被引量:3
  • 5李致忠,裴竹森,赵汝雄.分拣机故障诊断、记录、报警装置[P].中国专利,CN2306081,1999-02-03.
  • 6胡向东,王平.包刷分拣机故障诊断专家系统的设计与实现[C] //2000中国控制与决策学术年会论文集.沈阳:东北大学出版社,2000:419-421.
  • 7Xian Guangming . Mechanical failure classification forspherical roller bearing ofhydraulic injection moldingmachine using DWT-SVM[J]. Expert Systems withApplications, 2010,37(10) :6742-6747.
  • 8Elforjani M? Mba D. Detecting natural crack initia-tion and growth in slow speed shafts with the acousticemission technology [J]. Engineering Failure Analy-sis, 2009, 16:2121-2129.
  • 9Tse P W,Atherton D P. Prediction of machine deteri-oration using vibration based fault trends and recur-rent neural networks [J]. Vibration & Acoustics,1999, 12(7): 355-362.
  • 10Saimurugan M> Ramachandran K I,Sugumaran V,etal. Multi component fault diagnosis of rotational me-chanical system based on decision tree and supportvector machine [J]. Expert Systems with Applica-tions ,2011, 38(4):3819-3826.

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部