期刊文献+

密度锁工作特性的实验研究

Experimental Study on Working Characteristics of Density Lock
下载PDF
导出
摘要 介绍了密度锁的工作原理,并设计搭建了实验装置,研究了稳态工况和主泵停转事故时密度锁的工作特性。结果表明,在稳态工况下,密度锁能长期保持关闭,从而将主回路和余热排出回路隔开,此时,余热排出回路处于非工作状态,不会影响反应堆的正常工作。当发生主泵停转事故时,密度锁能迅速打开,使主回路和余热排出回路连通。余热排出回路会建立自然循环,且足以带走剩余热量。 The working principle of density lock was introduced in this paper,and the experimental loop was built so that researches on working performance of density lock in the system were done at steady-state operation and pump trip conditions.The results show that at steady-state operation conditions,density lock can keep close in a long run, which will separate passive residual heat removal circuit from primary circuit.As a result,passive residual heat removal circuit is in the non-operating conditions,which does not influence normal operation of reactors.At the pump trip conditions,density lock can be automatically opened quickly,which will make primary and passive residual heat removal system communicated.The natural circulation is well established in the two systems,and is enough to ensure removal of residual heat.
出处 《原子能科学技术》 EI CAS CSCD 北大核心 2011年第8期920-924,共5页 Atomic Energy Science and Technology
关键词 密度锁 余热排出回路 主泵停转 density lock residual heat removal circuit pump trip
  • 相关文献

参考文献6

二级参考文献20

  • 1JUHN P E, KUPITZ J, CLEVELAND J, et al. IAEA activities on passive safety systems and overview of international development[J]. Nucl Eng Des, 2000, 201(48): 49-54.
  • 2MEHEDINTEANU S. An application of the new way to prevent core melting in pressure tube reactors (CANDU type)[J]. Annals of Nuclear Energy, 2001, 28(1): 79-88.
  • 3MIZUNO T, ITO T, OHTA K. The inherentlysafe fluidized-bed boiling water reactor concept [J]. Annals of Nuclear Energy, 1990, 17 (9) : 487-492.
  • 4BABALA D. Pressurized water reactor inherent core protection by primary system thermohydraulies[J]. Nuclear Science and Engineering, 1985, 90(3) : 400-410.
  • 5PIND C, FREDELL J. Summary of theoretical analyses and experimental verification of PlUS density lock development program [C]//IAEA Technical Committee Meeting (TCM) on Progress in Development and Design Aspects of Advaneed Water-Cooled Reactors in Rome. Vienna:IAEA, 1991: 213-219.
  • 6TASAKA K, IMAI S, MASAOKA H, et al. Feedback control of a primary pump for safe and stable operation of a PIUS-type reactor[J]. Nucl Eng Des, 1993, 144(2): 345-352.
  • 7HAGA K, TASAKA K, KUKITA Y. The simulation test to start up the PlUS-type reactor from Isothermal fluid condition[J]. J Nucl Sci Technol, 1995, 32(9): 846-854.
  • 8ITO T, KAMIHAMA T, NOBUHARA F, et al. Thermal-hydraulic experiments of an advanced PIUS-type reactor [C]//International Conference on Nuclear Engineering. New York: [s.n.], 1996: 163-170.
  • 9Juhn P E, Kupitz J, Cleveland J. IAEA Activities on Passive Safety Systems and Overview of International Development [J]. Nuclear Engineering and Design, 2000, 201(48): 49 - 54.
  • 10崔广余译.当代压水堆核电站发展新趋势(第一版)[M].北京:机械工业出版社,1997.259-268.

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部