期刊文献+

基于流形学习的三维步态鲁棒识别方法 被引量:5

3D Robust Gait Recognition Based on Manifold Learning
原文传递
导出
摘要 针对过去几乎都是在单目视觉的情况下进行步态识别研究的现状,提出一种基于立体视觉的步态识别方法.首先利用立体匹配技术获得人体轮廓的三维信息,并据此构造出三维人体轮廓描述子以获取人体的步态特征.接着通过平滑、去噪等预处理手段抑制噪声的影响,并采用流形学习构建低维流形进行特征降维.最后将最近邻分类器和最近邻模板分类器用于识别过程.采用该方法在PRLABⅡ立体步态数据库和不规则测试数据集ExN上进行实验,获得较高的识别率.实验结果表明,文中所提出的方法具有与行人行走路径到摄像机之间的距离无关的特点,且对于不完整的残缺步态序列、行人行为姿态的变化、携带物品和服饰变化等具有较强的鲁棒性. Aiming at the situation that many approaches for gait recognition are based on a single camera, an approach of gait recognition based on stereo vision is proposed. Firstly, 3D coordinates of human body contour are gotten by stereo matching. Then, 3D body contour descriptor (3D-BCD) is constructed to get the gait feature of human. The noise and glitch are eliminated by noise-eliminated method. Thus, manifold learning (Laplacian Eigenmaps ) is used for dimensionality reduction. The nearest neighbor classifier (NN) and the nearest neighbor classifier about template (TNN) are used for classifying category. Finally, a series of experiment results on the stereo gait database of PRLAB 11 and the irregular test stereo gait dataset ExN proved out the high correct classification rate and the strong robustness of the proposed approach. And the approach is not related with the distance between camera and the walking path. Moreover, it has stronger robustness with the incomplete gait sequences, the changes of human behavior, the changes of apparels, and carrying a bag.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2011年第4期464-472,共9页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金资助项目(No.60875026 60805019)
关键词 步态识别 三维人体轮廓描述子(3D—BCD) 流形学习 拉普拉斯特征映射 Gait Recognition, 3D Body Contour Descriptor (3D-BCD), Manifold Learning, LaplacianEigenmaps
  • 相关文献

参考文献30

  • 1Little J, Boyd J. Recognizing People by Their Gait: The Shape of Motion. Journal of Computer Vision Research, 1998, 1 (2) : 2 -32.
  • 2Bhanu B, Han J. Human Recognition on Combining Kinematic and Stationary Features // Proc of the 4th International Conference on Audio- and Video-Based Biometric Person Authentification. Guilford, UK, 2003:600-608.
  • 3Wang Liang, Tan Tieniu, Ning Huazhong, et al. Silhouette Analysis-Based Gait Recognition for Human Identification. IEEE Trans on Pattern Analysis and Machine Intelligence, 2003, 25 (12) : 1505 - 1518.
  • 4Sappa A, Aifanti N, Malassiotis S, et al. 3D Gait Estimation from Monoscopic Video// Proc of the 11 th International Conference on Image Processing. Singapore, Singapore, 2004 : 1963 - 1966.
  • 5Yu Shigi, Wang Liang, Hu Weiming, et al. Gait Analysis for Human Identification in Frequency Domain// Proc of the 3rd Intemational Conference on Image and Graphics. Hongkong, China, 2004: 282 - 285.
  • 6Lam T H W, Lee R S T. Human Identification by Using the Motion and Static Characteristic of Gait // Proc of the 18th International Conference on Pattern Recognition. Hongkong, China, 2006, Ⅲ: 996 - 999.
  • 7Zhou Ziheng, Prtigel-Bennett A, Damper R J. A Bayesian Framework for Extracting Human Gait Using Strong Prior Knowledge. IEEE Trans on Pattern Analysis and Machine Intelligence, 2006, 28 (11): 1738-1752.
  • 8Zhao Guoxing, Li Cui, Li Hua. Gait Recognition Using Fractal Scale. Pattern Analysis & Applications, 2007, 10(3) : 235 -246.
  • 9Chen M H, Ho M F, Huang C L. Gait Analysis for Human Identification through Manifold Learning and HMM. Pattern Recognition, 2007, 41(8) : 969 -972.
  • 10Singh S, Biswas K. Spatio-Temporal Energy Based Gait Recognition// Proc of the 9th IEEE International Conference on Data Mining. Miami, USA, 2009 : 998 - 1003.

同被引文献147

  • 1谭璐,吴翊,易东云.稳健局部线性嵌入方法[J].国防科技大学学报,2004,26(6):91-95. 被引量:13
  • 2徐启华,师军.应用SVM的发动机故障诊断若干问题研究[J].航空学报,2005,26(6):686-690. 被引量:20
  • 3彭彰,吴晓娟,杨军.基于肢体长度参数的多视角步态识别算法[J].自动化学报,2007,33(2):210-213. 被引量:10
  • 4Little J,Boyd J E.Recognizing People by Their Gait:The Shape of Motion.Videre:Journal of Computer Vision Research,1998,1(2):1-32.
  • 5Tanawongsuwan R,Bobick A.Performance Analysis of TimeDistance Gait Parameters under Different Speeds//Proc of the4th International Conference on Audio-and Video-Based Biometric Person Authentication.Guildford,UK,2003:715-724.
  • 6Cuntoor N,Kale A,Chellappa R.Combining Multiple Evidences for Gait Recognition//Proc of the International Conference on Acoustics,Speech and Signal Processing.Hong Kong,China,2003,III:33-36.
  • 7Chalidabhongse T,Kruger V,Chellappa R.The UMD Database for Human Identification at a Distance.Technical Report.College Park,USA:University of Maryland,2001.
  • 8Gross R,Shi J.The CMU Motion of Body(MoBo)Database.Technical Report,CMU-RI-TR-01-18.Pittsburgh,USA:Carnegie Mellon University,2001.
  • 9Nixon M,Carter J,Shutler J,et al.Experimental Plan for Automatic Gait Recognition.Technical Report.Southampton,UK:University of Southampton,2001.
  • 10Sarkar S.The Human ID Gait Challenge Problem:Data Sets,Performance and Analysis.IEEE Trans on Pattern Analysis and Machine Intelligence,2005,27(2):162-177.

引证文献5

二级引证文献85

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部