期刊文献+

基于局部性正则化推广误差界的特征选择算法 被引量:3

Feature Selection Based on Locality Regularized Generalization Error Bound
原文传递
导出
摘要 特征选择是当前模式识别领域的研究热点.滤波方法和封装方法是特征选择算法中评价特征子集的两种主要策略,但均不能保证其后所设计的分类器的推广性能.针对以上两种策略的不足,首先引入基于样本流形结构的局部性正则化推广误差界.并在此基础上,以局部性正则化推广误差界为评价函数,以局部性正则化分类方法为目标分类器,提出一种混合滤波-封装型特征选择算法.该算法既保持了较高的计算效率,又保证了目标分类器良好的推广性.实验结果表明,新算法具有比对比算法更优的分类性能. Feature selection is a hot topic in current pattern recognition. Filter and wrapper approaches are two of the most important policies to evaluate feature subsets in feature selection algorithms. However, they both can not guarantee the generalization performance of the following designed classifier. To solve these problems in the two approaches, a locality regularized generalization error bound is firstly introduced which embeds the manifold structure information hidden in the input samples. Furthermore, a hybrid filter- wrapper feature selection algorithm is proposed, which uses the locality regularized generalization error bound as the evaluation function as well as the locality regularization method as the classifier. As a result, the proposed algorithm can not only keep high computational efficiency, but also guarantee the good generalization performance of the following classifier. Experimental results validate the superiority of the algorithm.
作者 薛晖 陈松灿
出处 《模式识别与人工智能》 EI CSCD 北大核心 2011年第4期473-478,共6页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金项目(No.60773061 60973097 60905002) 江苏省自然科学基金项目(No.BK2008381)资助
关键词 特征选择 局部性正则化推广误差界 流形结构 机器学习 Feature Selection, Locality Regularized Generalization Error Bound, Manifold Structure,Machine Learning
  • 相关文献

参考文献11

  • 1Duda R O, Hart P E, Stork D G. Pattern Classification. New York, USA: John Wiley & Sons, 2003.
  • 2Guyon I,Elisseeff A. An Introduction to Variable and Feature Selection. Journal of Machine Learning Research, 2003, 3 : 1157 - 1182.
  • 3詹德川,周志华.基于相关投影分的特征选择算法[J].计算机科学与探索,2007,1(2):138-145. 被引量:2
  • 4李仁璞,王正欧.一种结构自适应的神经网络特征选择方法[J].计算机研究与发展,2002,39(12):1613-1617. 被引量:11
  • 5Ng W W Y, Yeung D S, Firth M, et al. Feature Selection Using Localized Generalization Error for Supervised Classification Problems Using RBFNN. Pattern Recognition, 2008, 41 (12) : 3706 -3719.
  • 6Yeung D S, Ng W W Y, Wang D, et al. Localized Generalization Error and Its Application to Architecture Selection for Radial Basis Function Neural Network. IEEE Trans on Neural Networks, 2007, 18(5) : 1294 -1305.
  • 7Xue Hui, Chen Songcan, Zeng Xiaoqin. Classifier Learning with a New Locality Regularization Method. Pattern Recognition, 2008, 41 (5) : 1479 -1490.
  • 8Belkin M, Niyogi P. Laplacian Eigenmaps and Spectral Technique for Embedding and Clustering// Proc of the 15th Annual Conference on Neural Information Processing Systems. Vancouver, Canada, 2001:585 -591.
  • 9毛勇,周晓波,夏铮,尹征,孙优贤.特征选择算法研究综述[J].模式识别与人工智能,2007,20(2):211-218. 被引量:95
  • 10Bhattacharjee A, Richards W G, Staunton J, et al. CLassification of Humanlung Carcinomas by mRNA Expression Profiling Reveals Distinct Adenocarcinoma Subclasses // Proc of the National Academic Science, 2001, 98(24): 13790-13795.

二级参考文献59

  • 1de Sa Marques J P. Pattern Recognition Concepts, Methods and Applications. Berlin, Germany: Springer-Verlag, 2002
  • 2Ganeshanandam S, Krzanowski W J. On Selecting Variables and Assessing Their Performance in Linear Discriminant Analysis. Australian Journal of Statistics, 1989, 31(3):433-447
  • 3Theodoridis S, Koutroumbas K. Pattern Recognition. 2nd Edition. New York, USA:Elsevier, 2003
  • 4Dougherty E R. Small Sample Issues for Microarray-Based Classification. Comparative and Functional Genomics, 2001, 2 (1) : 28-34
  • 5Dougherty E R, Shmulevich I, Bittner M L. Genomic Signal Processing: The Salient Issues. EURASIP Journal on Applied Signal Processing, 2004, 4(1): 146-153
  • 6Kim S, Dougherty E R, Barrera J, et al. Strong Feature Sets from Small Samples. Journal of Computational Biology, 2002, 9 (1): 127-146
  • 7Hastie T, Tibshirani R, Friedman J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. New York, USA: Springer-Verlag, 2001
  • 8Webb R A. Statistical Pattern Recognition. New York, USA: John Wiley & Son, 2002
  • 9Dudoit S, Fridlyand J, Speed T P. Comparison of Discrimination Methods for the Classification of Tumors Using Gene Expression Data. Journal of the American Statistical Association,2002, 97(457):77-87
  • 10Adam B L, Vlahou A, Semmes O J, et al. Proteomic Approaches to Biomarker Discovery in Prostate and Bladder Cancers. Proteomics, 2001, 1(10): 1264-1270

共引文献105

同被引文献41

  • 1] Rodgers J L, Nicewander W A. Thirteen Ways to Look at the Corre- lation Coefficient. The American Statistician, 1988,42( 1 ) : 59-66.
  • 2Hua J P, Tembe W D, Dougherty E R. Performance of Feature-Se- lection Methods in the Classification of High-Dimension Data. Pat- tern Recognition, 2009, 42 (3) : 409-424.
  • 3Foithong S, Pinngern O, Attachoo B. Feature Subset Selection Wrapper Based on Mutual Information and Rough Sets. Expert Sys- tems with Applications, 2012, 39( 1 ) : 574-584.
  • 4Uncu0, Ttlrken L B. A Novel Feature Selection Approach: Combi- ning Features Wrappers and Filters. Information Science, 2007, 177(2) : 449-466.
  • 5Szedmak S, Shawe-Taylor J, Saunders C, et al. Multiclass Classifi- cation by lI Norm Support Vector Machine // Proc of the Pattern Recognition and Machine Learning in Computer Vision Workshop. Grenoble, France, 2004 : 1 - 19.
  • 6Vapnik V N. Statistical Learning Theory. New York, USA: Wileylnterscience, 1998.
  • 7Guyon I, Weston J, Bamhill S, et al. Gene Selection for Cancer Classification Using Support Vector Machines. Machine Learning, 2002, 46(1/2/3) : 389-422.
  • 8Duan K B, Rajapakse J C, Wang H Y, et al. Mu|tiple SVM-RFE for Gene Selection in Cancer Classification with Expression Data. IEEE Trans on Nanobioscienee, 2005, 4(3 ) : 228-234.
  • 9Mundra P A, Rajapakse J C. SVM-RFE with MRMR Filter for Gene Selection. IEEE Trans on NanoBioseience, 2010, 9 ( 1 ) : 31-37.
  • 10Li J T, Jia Y M, Li W L. Adaptive Huberized Support Vector Machine and its Application to Microarray Classification. Neural Computing and Applications, 2011, 20( 1 ) : 123-132.

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部