期刊文献+

基于线性分段与HMM的时间序列分类算法 被引量:4

Time Series Classification Algorithm Based on Linear Segmentation and HMM
原文传递
导出
摘要 抽象出时间序列的多段线性特征,并提出一种时间序列分类算法.该算法包括3个模块:导数估值函数,线性分段方法,DDHMM模型(基于HMM).首先,利用导数估值函数与线性分段方法检测多段线性特征,若满足多线段特征,则将时间序列转化为特定结构的观察值序列;然后,利用训练观察值序列训练DDHMM模型,通过比较各模型产生测试观察值序列的概率值进行分类.实验表明,针对满足多段线性特征的时间序列,该算法具有较高的分类精度,应用在UCI数据集和实际工程中,分类效果好. The multi - segment linear ( MSL ) feature of the time series are collected, and a time series classification algorithm is proposed, which consists of derivative estimation function, linear segmentation method and DDHMM model (base on HMM). Firstly, segmentation method can be used together to detect the the derivative estimation function and the linear MSL feature. If they are matched, time series can be converted into observed sequence with a special structure. Next, the training observed sequences can be used to train DDHMM models. After training, the time series are classified through comparing the probability value of testing observed sequences generated by each model. The experimental results show that the proposed algorithm has a high accuracy when classifying the time series that match the MSL feature, and it has good performance in the classification on the UCI dataset and the actual projects.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2011年第4期574-581,共8页 Pattern Recognition and Artificial Intelligence
基金 吉林省科技发展计划项目资助(No.20070321 20090704)
关键词 时间序列分类 隐马尔可夫模型 线性分段 导数估值 Time Series Classification, Hidden Markov Model, Linear Segmentation, Derivative Estimation
  • 相关文献

参考文献18

  • 1Itakura F. Minimum Prediction Residual Principle Applied to Speech Recognition. IEEE Trans on Acoustics, Speech and Signal Process, 1975, 23 ( 1 ) : 67 - 72.
  • 2杨一鸣,潘嵘,潘嘉林,杨强,李磊.时间序列分类问题的算法比较[J].计算机学报,2007,30(8):1259-1266. 被引量:40
  • 3Myers C, Rabiner L, Roseneberg A. Performance Tradeoffs in Dynamic Time Warping Algorithms for Isolated Word Recognition. IEEE Trans on Acoustics Signal Processing, 1980, 28(6) : 623 -635.
  • 4Rabiner L R. A Tutorial on Hidden Markov Models and Selected Application in Speech Recognition// Proc of the IEEE, 1989, 77 (2): 257 - 286.
  • 5Deller J R, Hansen H L, Proakis J G. Discrete-Time Processing of Speech Signals. New York, USA: Macmillan, 1993.
  • 6Bahl L, Brown P, de Souza P, et al. Maximum Mutual Information Estimation of Hidden Markov Model Parameters for Speech Recognition// Proc of the IEEE International Conference on Acoustics, Speech, and Signal Processing. Tokyo, Japan, 1986 : 49 -52.
  • 7Gauvain J L, Lee C H. MAP Estimation of Continuous Density HMM : Theory and Application//Proc of the DARPA Speech and Natural Language Workshop. Harriman, USA : Morgan Kaufman, 1992, 185 - 190.
  • 8Saul L, Rahim M. Maximum Likelihood and Minimum Classification Error Rate Factor Analysis for Automatic Speech Recognition. IEEE Trans on Speech and Audio Prooessing, 2000, 8(2) : 115 -125.
  • 9Brants T. Estimating Markov Model Structures// Proc of the 4th Conference on Spoken Language Processing. Philadelphia, USA, 1996 : 893 - 896.
  • 10Bicego M, Murlno V, Figueiredo M. A Sequential Pruning Strategy for the Selection of the Number of States in Hidden Markov Models. Pattern Recognition Letters, 2003, 24(9) : 1395 - 1407.

二级参考文献21

  • 1Keogh E,Kasetty S.On the need for time series data mining benchmarks:A survey and empirical demonstration//Proceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.Edmonton,Alberta,Canada,2002:102-111
  • 2Yang Yi-Ming,Yang Qiang,Lu Wei,Pan Jia-Lin,Pan Rong,Lu Chen-Hui,Li Lei,Qin Zhen-Xing.Preprocessing time series data for classification with application to CRM//Proceedings of the 18th Australian Joint Conference on Artificial Intelligence (AI 2005).Sydney,Australia,2005:133-142
  • 3Ling C X,Huang J,Zhang H.AUC:A statistically consistent and more discriminating measure than accuracy//Proceedings of the 18th International Joint Conference on Artificial Intelligence.Acapulco,Mexico,2003:329-341
  • 4Faloutsos Christos,Ranganathan M,Manolopoulos Yannis.Fast subsequence matching in time-series databases//Proceedings of the 1994 ACM SIGMOD International Conference on Management of Data.Minneapolis,Minnesota,United States,1994:419-429
  • 5Chan Franky Kin-Pong,Fu Ada Wai-Chee,Yu Clement.Haar wavelets for efficient similarity search of time-series:With and without time warping.IEEE Transactions on Knowledge and Data Engineering,2003,15(3):686-705
  • 6Yi Byoung-Kee,Jagadish H V,Faloutsos Christos.Efficient retrieval of similar time sequences under time warping//Proceedings of the 14th International Conference on Data Engineering.Orlando,Florida,1998:201-208
  • 7Kim Sang-Wook,Park Sanghyun,Chu Wesley W.An indexbased approach for similarity search supporting time warping in large sequence databases//Proceedings of the 17th International Conference on Data Engineering.Heidelberg,Germany,2001:607-614
  • 8Quinlan J R.C4.5:Programs for Machine Learning.San Francisco:Morgan Kaufmann Publishers,1993
  • 9Kay Steven M.Fundamentals of Statistical Signal Processing:Estimation Theory.Upper Saddle River,NJ,USA,Prentice Hall,1993
  • 10MacQueen J B.Some methods for classification and analysis of multivariate observations//Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability.Berkeley,1967,1:281-297

共引文献39

同被引文献24

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部