期刊文献+

一种快速的不完备决策表属性约简算法 被引量:16

Quick Attribution Reduction Algorithm Based on Incomplete Decision Table
下载PDF
导出
摘要 目前,关于不完备决策表的属性约简算法已有不少,其中在很多算法中,其时间复杂度为O(|C|3|U|2).为有效地降低算法的时间复杂度,给出一个差别矩阵的定义和基于差别矩阵属性约简的定义,并证明了该属性约简与基于正区域的属性约简是等价的.生成的差别矩阵无需比较Uneg之间的对象,使差别矩阵得到有效地简化,进一步降低算法的存储空间.在此基础上,利用简化的差别矩阵设计一个快速计算不完备决策表的属性约简的算法,其时间复杂度降为max{O(|C|2|Upos||U|),O(K|C||U|)}.(其中K=max{|TC(xi)|,xi∈U}).最后用实例仿真说明了新算法的有效性. At present, some scholars provided the attribution reduction algorithms of incomplete decision table. The time complexity of many algorithms are O(|C|^3|U|^2). To cut down the time complexity of the algorithms for computing attribution reduction, the definition of discernibility matrix based on positive region and the corresponding definition of the attribution reduction are provided. At the same time, it is proved that the attribution reduction is equivalent to the attribution reduction based on the positive region. The discernibility matrix is simplified for not comparing the objects between Uneg. On this condition, a quick algorithm for computing attribution reduction is designed with the simplified dicernibility matrix, whose time complexity is max{O(|C|^2|Upos||U|) ,O(K|C||U|)}(K = max{|Tc(x1)|,x1∈U}).At last, an emulate example is used to illustrate the efficiency of the new algorithm. Key words:rough set; incomplete decision table; positive region; discernibility matrix; attribution reduction; algorithm complexity
出处 《小型微型计算机系统》 CSCD 北大核心 2011年第9期1867-1871,共5页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(60963008)资助 广西省教育厅科研基金项目(200807MS015)资助 广西研究生教育科研创新基金项目(200910602M61)资助
关键词 粗糙集 不完备决策表 正区域 差别矩阵 属性约简 算法复杂度 rough set incomplete decision table positive region discernibility matrix atUibution reduction algorithm complexity
  • 相关文献

参考文献4

二级参考文献31

  • 1黄兵,周献中,张蓉蓉.基于信息量的不完备信息系统属性约简[J].系统工程理论与实践,2005,25(4):55-60. 被引量:41
  • 2曾黄麟.粗集理论极其应用--关于数据推理的新方法[M].重庆:重庆大学出版社,1988..
  • 3Wang G Y. Algebra view and information view of rough sets theory[A]. Data Mining and knowledge Discovery: Theory, Tools, and Technology Ⅲ, Proceedings of SPIE [C], 2001,4384:200-207.
  • 4Guan J W, Bell D A, Guan Z. Matrix computation for information systems[J]. Information Sciences, 2001,131:129-156.
  • 5Kryszkiewicz M. Rough set approach to incomplete information systems[J]. Information Sciences.1998,112: 39-49.
  • 6Slowinski R, Vsnderpooten D. A Generalized definition of rough approximations based on similarity[C]. IEEE Trans on Data and Knowledge Engineering, 2000,12(2): 331-336.
  • 7Tzung-Pei Hong, Li-Huei Tseng, Shyue-Liang Wang. Learning Rules from incomplete training examples by rough sets[J]. Expert Systems with Applications, 2002,22: 285-293.
  • 8Pawlak Z. Rough set[J]. International Journal of Computer and Information Sciences, 1982,11: 341-356.
  • 9Chin K S, Liang J Y, Dang C Y. Rough set data analysis algorithms for incomplete information systems [M]. LNAI2639,Springer-Verlag, 264-268.
  • 10kryszkiewicz M. Rough set approach to incomplete information system[J]. Information Sciences, 1998, 112: 39-49.

共引文献86

同被引文献122

引证文献16

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部