摘要
利用拓扑度理论和上下解方法讨论了一类三阶微分方程组{x′′′(t)+f1(t,y(t),x′(t),x″(t))=0,0≤t≤1,y′′′(t)+f2(t,x(t),y′(t),y″(t))=0,0≤t≤1在适当的条件下解的存在性.
By applying degree theory and the lower and upper solutions method,it was obtained that in suitable conditions the existence of at least a solution to the third-order nonlinear differential systems as follow: {x′′′(t)+f1(t,y(t),x′(t),x″(t))=0,0≤t≤1,y′′′(t)+f2(t,x(t),y′(t),y″(t))=0,0≤t≤1.
出处
《大学数学》
2011年第4期57-62,共6页
College Mathematics
基金
国家自然科学基金项目(10571050)
湖南省教育厅重点项目(07A038)
关键词
三阶微分方程组
边值问题
NAGUMO条件
上下解
拓扑度
third-order differential system
boundary value problem
nagumo-type condition
lower and upper solution
topological degree