期刊文献+

矩阵方程AX+XB=C的双对称解及其最佳逼近 被引量:2

The Bisymmetric Solution of Matrix Equation AX+XB=C and Its Optimal Approximation
下载PDF
导出
摘要 提出一种求解线性矩阵方程AX+XB=C双对称解的迭代法.该算法能够自动地判断解的情况,并在方程相容时得到方程的双对称解,在方程不相容时得到方程的最小二乘双对称解.对任意的初始矩阵,在没有舍入误差的情况下,经过有限步迭代得到问题的一个双对称解.若取特殊的初始矩阵,则可以得到问题的极小范数双对称解,从而巧妙地解决了对给定矩阵求最佳逼近解的问题. An iterative method to find the bisymmetric solution of the linear matrix equation AX+XB=C is put forward in this paper.This iterative method can judge automatically the information of solutions.When the equation is consistent,it converges a bisymmetric solution of the equation.When the equation is inconsistent,It converges the least-squares bisymmetric solution of the equation.For any initial matrix,a bisymmetric solution can be obtained within finite iteration steps in the absence of roundoff errors.If a special kind of initial matrix is chosen,the bisymmetric solution with least norm can be obtained,and wonderfully handle the problem of solving its optimal approximation solution for a given matrix.
出处 《大学数学》 2011年第4期93-98,共6页 College Mathematics
基金 国家"973"项目基金(2004CB318000)
关键词 线性矩阵方程 迭代法 双对称解 最佳逼近解 最小二乘解 linear matrix equation iterative method bisymmetric solution optimal approximation solution least-squares solution
  • 相关文献

参考文献4

  • 1EvansD J, Wan C R. A preconditioned conjugate method for axe-xb= c [J]. International Journal of Computer Mathematics, 1993,49 (3&4) :207-219.
  • 2Nguyen Thanh Lan. On the operator equation AX-XB= C with unbounded operators A,B, and C[J]. Abstract and Applied Analysis, 2001,6 (6) : 317 - 328.
  • 3殷保群,奚宏生,杨孝先.矩阵方程AX-XB=C非奇异解的存在性[J].中国科学技术大学学报,2000,30(3):340-344. 被引量:8
  • 4袁永新.矩阵方程AX+XB=D的最优解[J].华东船舶工业学院学报,2004,18(2):20-23. 被引量:4

二级参考文献12

  • 1胡端平.矩阵方程AX-XB=C的最小多项式解法[J].应用数学学报,1993,16(3):295-301. 被引量:5
  • 2Duan Gaungren,IEEE Trans Automat Control,1993年,38卷,2期,276页
  • 3高维新,中国科学.A,1988年,18卷,6期,576页
  • 4钱吉林,华中师范大学学报,1987年,2期,159页
  • 5KUCERA V.The matrix equation AX+BX=C[J].SIAMJ Appl Math,1972,26:15-25.
  • 6FLANDERS H,WIMMER H K.On the matrix equation AX-XB=C[J]Linear Algebra Appl.1979.25:41-43.
  • 7BAKSALARY J K,KALA R.The matrix equationAX-XB=C[J].SIAM J Appl Math,1977,32:707-710.
  • 8CHU K W E.The solution of the matrix equation AXB-CXD=E and (YA-DZ,YC-BZ)=(E,F)[J].Linear al-gebra Appl,1987,93:93-105.
  • 9CHU K W E.Singular value and generalized singular valuedecompositions and the solution of linear matrix equation[J].Linear Algebra Appl,1987,88/89:83-98.
  • 10JAMESON A,KREINDLER E,LANCASTER P,Symmetric ,positive semidefinite,and positive definite real solutions of AX=XAT and AX=YB[j].Linear Algebra Appl,1992,160:189-215.

共引文献8

同被引文献8

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部