期刊文献+

La_(1.8)Ca_(0.2)Mg_(14)Ni_3合金在甲苯溶液中球磨改性后的储氢性能

Hydrogen Storage Properties of La_(1.8)Ca_(0.2)Mg_(14)Ni_3 Alloy Modified by Ball Milling in Toluene
下载PDF
导出
摘要 采用在甲苯介质中球磨以改善La1.8Ca0.2Mg14Ni3的储氢性能。随着球磨时间的增加,合金的吸放氢性能得到显著地提高,在20 h达到最高。其在513 K,4.0 MPa氢压下初次活化时,吸氢质量分数达到了3.95%,在3次活化后,300 K时的吸氢质量分数达到3.85%,在613 K,一个大气压的放氢质量分数在900 s内达到了4.92%。通过XRD和SEM分析,球磨后合金颗粒粒径明显减小且有非晶化趋势。在球磨过程中形成了电子络合体(electrondonor-acceptor,EDA)体系。合金颗粒粒径、非晶化程度和EDA共同作用使球磨20 h的合金表现出最优异的吸放氢性能。 The hydrogen storage alloy of La1.8Ca0.2Mg14Ni3 is modified by ball-milling in the toluene to enhance its hydriding/dehydriding properties.The results show that increasing the milling time the hydriding/dehydriding properties of the alloy is enhanced dramatically,and 20 h-milled alloy show the best properties.In the initial cycle,it can absorb 3.95 wt.% hydrogen at 513 K.Even at room temperature(about 300 K) it can absorb 3.85 wt.% hydrogen after being activated for three times.And at 613 K it can desorb 4.92 wt.% hydrogen within 900 seconds to 0.1 MPa.The XRD and SEM analysis indicates that after milling the particle size of the alloy becomes smaller,and parts of the alloy are amorphized to some extent,which makes the alloys easier to be activated.Furthermore,toluene can modify magnesium-based La1.8Ca0.2Mg14Ni3 alloy by formation of the EDA(electro donor-acceptor) complexes when milling.These factors altogether make the alloy show much better hydrogen storage properties after being modified by ball milling in toluene for 20 h.
出处 《浙江理工大学学报(自然科学版)》 2011年第5期744-748,共5页 Journal of Zhejiang Sci-Tech University(Natural Sciences)
基金 国家自然科学基金(50901068) 浙江省自然科学基金(Y4090495)
关键词 镁基合金 球磨 储氢合金 甲苯 动力学 magnesium based alloy ball milling hydrogen storage alloy toluene kinetics
  • 相关文献

参考文献10

  • 1Luo W, Ronnebro E. Towards a viable hydrogen storage system for transportation application[J]. Journal of Alloys and Compounds, 2005, 404: 392-395.
  • 2Thallapally P K, Lloyd G O, Wirsig T B, et al. Organic crystals absorb hydrogen gas under mild conditions[J]. Chemical Communications, 2005, 42: 5272-5274.
  • 3Wang W, Chen C P, Chen L X, et al. Change in structure and hydrogen storage properties of La2 Mg16Ni alloy after modi- fication by mechanical grinding in tetrahydrofuran[J]. Journal of Alloys and Compounds, 2002, 339: 175-179.
  • 4Liu X. Thermal stabilization and hydrogen storage properties of Mg-40wt.%Ti0.28 Cr0.50 V0.22 composite prepared by me- chanical milling[J]. International Journal of Hydrogen Energy, 2007, 32: 965-968.
  • 5lmamura H, Kawahigash M, Tsuchiya S. Exceptionally active magnesium for hydrogen storage= Solvated magnesium clus- ters formed in low temperature matrices[J]. Journal of the Less Common Metals, 1983, 95: 157-160.
  • 6Selvam P, Viswanathan B, Swamy C S, et al. Magnesium and magnesium alloy hydrides[J]. International Journal of Hy- drogen Energy, 1986, 11: 169-192.
  • 7肖学章 陈长聘 王新华等.非晶Mg-Fe复合物的机械球磨制备及其电化学储氢特性.物理化学学报,2005,:567-568.
  • 8Bogdanovic B, Spliethoff B. Active MgH2-Mg-systems for hydrogen storage[J]. International Journal of Hydrogen Ener- gy, 1987, 12: 863-873.
  • 9Imamura H, Sakasai Y, Kajii Y J. Hydrogen absorption of Mg-Based composites prepared by mechanical milling: factors affecting its characteristics[J]. Journal of Alloys and Compounds, 1996, 232: 218-223.
  • 10迟洪忠,陈长聘,陈立新.苯溶液中球磨La_2Mg_(16)Ni合金的储氢性能[J].中国有色金属学报,2003,13(6):1374-1377. 被引量:5

二级参考文献12

  • 1[1]Homma T. In present status of fuel cells R & D in Japan[A]. Proceedings of International Symposium on Fuel Cells for Vehicles[C]. Nagoya: Committee of the Int Sym on Fuel Cells for Vehicles, 2000. 1-7.
  • 2[2]Selvanm P, Viswanathan B, Swamy C S, et al. Magnesium and magnesium alloy hydrides[J]. Int J Hydrogen Energy, 1986, 11(3): 169-192.
  • 3[3]Yajima S, Kayano H. Hydrogen absorption inLa2Mg17[J]. J Less Common Met, 1977, 55(1): 139-141.
  • 4[4]Khrussanova M, Peshev P. Calcium- and nickel- substituted lanthanum-magnesium alloys for hydrogen storage[J]. J Less-Common Met, 1987, 131(1-2): 397-383.
  • 5[5]Imamura H, Sakasai N, Fujinaga T. Characterization and hydriding properties of Mg-graphite composites prepared by mechanical grinding as new hydrogen storage materials[J]. J Alloys Comp, 1997, 253-254(1-2): 34-37.
  • 6[6]WANG Wei, CHEN Chang-pin, CHEN Li-xin, et al. Change in structure and hydrogen storage properties of La2Mg16Ni alloy after modification by mechanical grinding in tetrahydrofuran[J]. J Alloys Comp, 2002, 339(1-2): 175-179.
  • 7[7]CHEN Chang-pin, LIU Bing-hong, LI Zhou-peng, et al. The activation mechanism of Mg-based hydrogen storage alloys[J]. Z Phys Chem Bd, 1993, 181(1-2): 251-258.
  • 8[8]Tamaru K. Heterogeneous catalysis by electron donor-acceptor complexes of alkali metals[J]. Catal Rev, 1970, 4(1): 161-178.
  • 9[9]Imamura H, Tabata S, Takesue Y, et al. Hydriding-dehydriding behavior of magnesium composites obtained by mechanical grinding with graphite carbon[J]. Int J Hydrogen Energy, 2000, 25(9): 837-843.
  • 10[10]Bogdanovicc B, Spliethoff B. Active MgH2-Mg-system for hydrogen storage[J]. Int J Hydrogen Energy, 1987, 12(12): 863-873.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部