期刊文献+

基于人工神经网络的数字图像盲取证 被引量:1

Blind Detection Algorithms for Forged Images Based on Artificial Neural Networks
下载PDF
导出
摘要 数字图像盲取证技术是一项通过图像本身统计特性来鉴别图像是否被篡改的技术。文章基于数码相机的成像原理,利用人工神经网络来预测成像过程中由于CFA(color filter arrays)插值算法导致图像像素点之间出现的相关性关系,由于没有篡改的图像采用的CFA插值算法是相同的,而被篡改的图像则可能存在两种以上的CFA插值算法,两种情况下图像预测误差会出现差异,本算法利用这种差异实现数字图像的盲取证。实验结果表明本算法具有一定的有效性。 Blind detection algorithms for images is a technique which uses image itself statistical features to identify the forged images.In this paper the authors bring forward a new algorithms which is based on imaging principle of digital camera,using artificial neural networks to forecasting the relationship between the relevant pixel.The image which has not been forged has only one interpolated algorithms,but the forged one may have two or more,so if using artificial neural networks to forecast two types of these images we will get different results,by this difference can find forged image.The result of simulation implies that this calculation has some effects.
作者 高强 张华熊
出处 《浙江理工大学学报(自然科学版)》 2011年第5期772-777,782,共7页 Journal of Zhejiang Sci-Tech University(Natural Sciences)
基金 浙江省自然科学基金(Y1100656)
关键词 数字图像盲取证 CFA滤波阵列 人工神经网络 blind detection algorithms for images bayer color filter array artificial neural networks
  • 相关文献

参考文献8

二级参考文献47

  • 1朱秀明,宣国荣,姚秋明,童学锋,施云庆.信息取证中图像重采样检测[J].计算机应用,2006,26(11):2596-2597. 被引量:7
  • 2Adams J, Parulski K, and Spaulding K. Color processing in digital cameras. IEEE Micro, 1998, 18(6): 20-30.
  • 3Popescu A C and Farid H. Exposing digital forgeries in color filter array interpolated images. IEEE Trans. on Signal Processing, 2005, 53(10): 3948-3959.
  • 4Bayram S, Sencar H, and Memon H, et al.. Source camera identification based on CFA interpolation. IEEE International Conference on Image Processing, Genova, Italy, Sep. 11-14, 2005, Vol. 3: III-69-72.
  • 5Bayram S, Sencar H, and Memon N. Improvements on source camera-model identification. IFIP Working Group 11.9 on Digital Forensics, Orlando, Florida, USA, Jan.29-Feb.1, 2006.
  • 6Gallagher A C. Detection of linear and cubic interpolation in JPEG compressed images. The 2nd Canadian Conference on Computer and Robot Vision 2005, Victoria, BC, Canada, May, 9-11, 2005: 65-72.
  • 7Long Y J and Huang Y. Image based source camera identification using demosaicking. IEEE 8th Workshop on Multimedia Signal Processing. Fairmont Empress Hotel Victoria, BC, Canada, Oct. 3-6, 2006: 419-424.
  • 8Swaminathan A, Wu M, and Liu K J R. Nonintrusive component forensics of visual sensors using output images. IEEE Trans. on Information Forensics and Security, 2007, 2(1): 91-106.
  • 9Swaminathan A, Wu M, and Liu K J R. Component forensics of digital cameras: a non-intrusive approach. IEEE Conference on Information Science and System, Princeton University, Princeton, New Jersey, USA, Mar. 22-24, 2006: 1194-1199.
  • 10Swaminathan A, Wu M, and Liu K J R. Non-intrusive forensic analysis of visual sensors using output images. IEEE International Conference on Acoustics, Speech and Signal Processing, Toulouse, France, May, 14-19, 2006, Vol. 5: 401-404.

共引文献209

同被引文献18

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部