期刊文献+

实封闭域上的代数

Algebras over Real Closed Field
下载PDF
导出
摘要 在建立了实封闭域F上复元素域C与四元素体H后得到了:(1)全阵代数F2n中有子代数同构于C,全阵代数F4n中有子代数同构于H;(2)F上代数扩张体只有F、C和H;(3)设F是域K里上维数有限的真子域,则F是实封闭的K是代数闭域且K=F((-1)~(1/2));(4)设A是F上的有限维代数,①若A是可除代数,则A同构于F、C或H,②若A是中心可除代数,则A同构于F或H,③若A是单代数,则A同构于全阵代数Fn、Cn与Hn中之一,④若A是中心单代数,则A同构于全阵代数Fn或Hn,⑤若A没有非零幂零理想,则A=sum Mni from i=1 to l,其中Mni∈{Fni,Cni,Hni},i=1,2,…,l。 The author constructs complex element field and quartic element division ring over the real closed filed.The following results are obtained: 1.Let F be a field,then(1) there is a subalgebras in the total matrix algebra F2n which is isomorphic to the complex element field C over F(C=F(i)),(2) there is a subalgebras in the total matrix algebra F4n which is isomorphic to the quartic element division ring H over F(H=F(1,i,j,k)).2.The only algebraic extension division rings over the real closed field F are(1) F,(2) C,and(3)H.3.Let F be a proper subfield of finite codimensional in the field K(∞).Then F is real closed if and only if Kis algebraically closed and K=F((-1)~(1/2)).4.Let A be a finite dimensional algebra over the real closed field F,then(1) up to isomorphism the only division algebras A are F,C or H,(2) up to isomorphism the only central division algebras A are F or H.(3) up to isomorphism the only simple algebras A are Fn,Cn or Hn.(4) up to isomorphism the only central simple algebras A are Fn or Hn.(5) If A has no non-zero nilpotent ideals,then A is a direct sum of finitely many total matric algebras Mni over F,where Mni∈{Fni,Cni,Hni}.
作者 徐忠明
出处 《浙江理工大学学报(自然科学版)》 2011年第5期814-818,共5页 Journal of Zhejiang Sci-Tech University(Natural Sciences)
关键词 实封闭域 全阵代数 可除代数 复元素域 四元素体 real closed field total matrix algebra division algebra complex element field quartic element division ring
  • 相关文献

参考文献4

  • 1Jacobson N. Basic Algebra: Ⅱ[M]. San Francisco: W. H. Freeman and company, 1980: 630-657.
  • 2谢邦杰.抽象代数[M].上海:上海科技出版社,1982..
  • 3Faith C. Algebra I: Rings, Modules, and Categories[M]. New York: Springer-Verlag Berlin Heidelberg, 19811 461-466.
  • 4Shafarevich I R. Notions of Algebra[M]. New York: Springer-Verlag Beidelberg, Z005: 61-95.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部