摘要
在建立了实封闭域F上复元素域C与四元素体H后得到了:(1)全阵代数F2n中有子代数同构于C,全阵代数F4n中有子代数同构于H;(2)F上代数扩张体只有F、C和H;(3)设F是域K里上维数有限的真子域,则F是实封闭的K是代数闭域且K=F((-1)~(1/2));(4)设A是F上的有限维代数,①若A是可除代数,则A同构于F、C或H,②若A是中心可除代数,则A同构于F或H,③若A是单代数,则A同构于全阵代数Fn、Cn与Hn中之一,④若A是中心单代数,则A同构于全阵代数Fn或Hn,⑤若A没有非零幂零理想,则A=sum Mni from i=1 to l,其中Mni∈{Fni,Cni,Hni},i=1,2,…,l。
The author constructs complex element field and quartic element division ring over the real closed filed.The following results are obtained: 1.Let F be a field,then(1) there is a subalgebras in the total matrix algebra F2n which is isomorphic to the complex element field C over F(C=F(i)),(2) there is a subalgebras in the total matrix algebra F4n which is isomorphic to the quartic element division ring H over F(H=F(1,i,j,k)).2.The only algebraic extension division rings over the real closed field F are(1) F,(2) C,and(3)H.3.Let F be a proper subfield of finite codimensional in the field K(∞).Then F is real closed if and only if Kis algebraically closed and K=F((-1)~(1/2)).4.Let A be a finite dimensional algebra over the real closed field F,then(1) up to isomorphism the only division algebras A are F,C or H,(2) up to isomorphism the only central division algebras A are F or H.(3) up to isomorphism the only simple algebras A are Fn,Cn or Hn.(4) up to isomorphism the only central simple algebras A are Fn or Hn.(5) If A has no non-zero nilpotent ideals,then A is a direct sum of finitely many total matric algebras Mni over F,where Mni∈{Fni,Cni,Hni}.
出处
《浙江理工大学学报(自然科学版)》
2011年第5期814-818,共5页
Journal of Zhejiang Sci-Tech University(Natural Sciences)
关键词
实封闭域
全阵代数
可除代数
复元素域
四元素体
real closed field
total matrix algebra
division algebra
complex element field
quartic element division ring