期刊文献+

广义Agard偏差函数的性质

Properties of the Generalized Agard Distortion Function
下载PDF
导出
摘要 探讨一些由广义Agard偏差函数ηK(a,x)定义的函数的单调性及凹凸性,并由此获得了关于ηK(a,x),λ(a,K)的一些不等式。 The authors present some monotonous properties and concavity and convexity properties of certain functions defined in terms of the generalized Agard distortion functionηK(a,x),from which some inequalities about ηK(a,x),λ(a,K) follow.
出处 《浙江理工大学学报(自然科学版)》 2011年第5期825-830,共6页 Journal of Zhejiang Sci-Tech University(Natural Sciences)
基金 国家自然科学基金资助项目(10771195) 浙江省教育厅科学研究基金资助项目(Y200908819)
关键词 ηK(a x) λ(a K) 单调性 不等式 凹凸性 ηK(a x) λ(a K) monotonous property inequality concavity and convexity property
  • 相关文献

参考文献14

  • 1Anderson G D, Qiu S L, Vamanumurthy M K, et al. Generalized elliptic integrals and modular equations[J]. Pacific Jour- nal of Mathematics, 2000, 192(1): 1-37.
  • 2Aramowitz M, Stegun I A. Handbook of Mathematical Functions with Formulas, Draphs and Mathematical Tables[M]. New York:Dover, 1965.
  • 3Agard S. Distortion theorems for quasiconformal mappings[J]. Ann Acad Sci Fenn Ser: AI, 1968, 413: 1-12.
  • 4He C Q. Distortion estimates of quasiconformal mappings[J]. Sci Sinica Ser: A, 1984, 27: 225-232.
  • 5Qiu S L, Vamanamurthy M K, Vuorinen M. Bounds for quasiconformal distortion functions [J]. J Math Anal Appl, 1997, 205 : 43-64.
  • 6Lehto O, Virtaned K I. Quasiconformal Mappings in the Plane[M]. New York: Springer-Verlag, 1973.
  • 7Lehto O, Virtaned K I, Vaisala J. Contributions to the distortin theorey of quasiconformal mappings[J]. Ann Acad Sci Fenn Ser: AI, 1959, 273: 1-14.
  • 8Beurling A, Ahlfors L. The boundary correspondence under quasi-conformal mappings[J]. Acta Math, 1956, 96: 125-142.
  • 9Lehto O. Univalent Functions and Teichmuller Spaces[M]. New York: Springer-Verlag, 1987.
  • 10Bowman F. Introduction to Elliptic Functions with Applications[M]. New York: Dower, 1961.

二级参考文献12

  • 1[1]Aramowitz M,Stegun I A.Handbook of Mathematical Functions with Formulas,Draphs and Mathematical Tables[M].New York:Dover,1965.
  • 2[2]Borwein J M,Borwein P B.Inequalities for compound mean iterations with logarithmic asymptotes[J].J Math Anal Appl,1993,177:572-582.
  • 3[3]Carlson B C,Gustafson J L.Asymptotic approximation for symmetric elliptic integrals[J].SIAM J Math Anal,1994,25(2):288-303.
  • 4[4]Anderson G D,Ren P D,Vamanamurthy M K.An inequality for complete elliptic integrals[J].J Math Anal Appl,1994,182:257-259.
  • 5[5]Anderson G D,Vamanamurthy M K.Some propertities of quasiconformal distortion functions[J].New Zealand Math,1995,24:1-16.
  • 6[6]Vamanamurthy M K,Vuorinen M.Inequalities for means[J].J Math Anal Appl,1994,183:155-166.
  • 7[7]Qiu S L,Vuorinen M.Sharp estimates for complete ellitptic integrals[J].SIAM J Math Anal,1997,27(3):823-834.
  • 8[9]Lawden D F.Elliptic Functions and Applications[M].New York:Springer-Verlng,1989.
  • 9[10]Henrici P.Applied and Computational Complex Analysis:I[M].New York:Wiley,1974.
  • 10[11]Agard S.Distortion theorems for quasiconformal mappings[J].Ann Acad Sci Fenn Ser AI,1968,413:1-12.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部