期刊文献+

基于PDMS和玻璃材料的毛细管被动阀临界压力分析 被引量:7

Burst pressure of capillary burst valve based on glass and PDMS
下载PDF
导出
摘要 针对现有的数值仿真方法不能够准确地计算矩形截面毛细阀用亲水性很好的玻璃作盖板时的临界压力,提出了一种分析复合壁面毛细管被动阀临界压力的方法。使用Surface Evolver(SE)自由软件,通过设置和实际流动相符的边界条件,并监测在扩张段入口处接触角的变化范围,实现了对由玻璃盖板和PDMS微通道构成的被动阀的临界压力的计算。此时,接触线应该设置为可以进入到扩张段的侧壁上,而不能固定在扩张段入口处。对于深度为25μm,宽深比为2,4,8,16的毛细管被动阀,得到的临界压力分别为0.77,0.45,0.33,0.24 kPa。仿真结果和转台实验结果基本相符,证实了SE方法的有效性。文中分析了接触角对毛细阀有效性的影响,指出当通道和平板材料的接触角之和大于90°时,毛细阀才能控制流动。 As the current simulation methods for capillary burst valves can not exactly calculate the burst pressure when the passive valve is limited by a glass flat cover with good hydrophilicity,a method to analyze the critical pressure of the passive value was proposed.The Surface Evolver(SE) was used to simulate the burst pressure of the microvalve composed of a glass cover and PDMS microchannels by setting the properly boundary conditions and monitoring the variation of the contact angle at the entrance of expansion section.In simulation,the liquid contact line should be set up the entrance of expansion section and come into the expansionary walls that connect the glass cover.Experiments show that the capillary burst pressures are 0.77,0.45,0.33 and 0.24 kPa,respectively,for the microvalves with the depth of 25 μm and the aspect of 2,4,8 and 16.The obtained simulation data are well in agreement with that obtained by a rotating platform.The effect of the contact angle for the capillary burst valve was also discussed,which points out that the valves do work until the sum of the contact angles on both the flat cover and the channel wall is greater than 90°.
出处 《光学精密工程》 EI CAS CSCD 北大核心 2011年第8期1852-1858,共7页 Optics and Precision Engineering
基金 国家863高技术研究发展计划B类资助项目(No.2006AA04Z367) 国家863高技术研究发展计划重点资助项目(No.2007AA042102)
关键词 微流体 毛细阀 附加压力 SURFACE Evolver microfluidic capillary burst valve burst pressure surface evolver
  • 相关文献

参考文献16

  • 1DUCREE J, HAEBERLE S, LUTZ S, etal.. The centrifugal microfluidic Bio-Disk platform[J]. Mi- cromech. Microeng. , 2007,17 (7) :103-115.
  • 2SIEGRIST J,GORKIN R,CLIME L, et al.. Serial siphon valving for centrifugal microfluidic platforms [J]. Micro fluid Nanofluid. , 2010,9(1) :55-33.
  • 3GLIERE A, DELATTRE C. Modeling and fabrica- tion of capillary stop valves for planar microfluidic systems[J]. Sens. Actuators A : Phys. , 2006,130- 131 :601-608.
  • 4MAN P F, MASTRANGELO C H, BURNS M A, et al.. Microfabricated capillary driven stop valves and sample injector, in: MEMS Conference, Hei- delberg, Germany, January 25-29, 1998.
  • 5LEU T S, CHANG P Y. Pressure barrier of capil-lary stop valves in micro sample separators EJ~- Sens. Actuators A: Phys. , 2004, 115 (2-3) : 508- 515.
  • 6CHEN J M, HIANG P C, LIN M G. Analysis and experiment of capillary valves for microfluidics on a rotating disk[J]. Micro fluid Nano fluid , 2008,4 (5) :427-437.
  • 7CHO H, KIM H Y, KANGJ Y, et al.. How the capillary burst microvalve works[J]. J. Colloid In- terface Sci. ,2007,306(2):379-385.
  • 8ZENG J, BANERJEE D, DESHPANDE M, et al.. Design analysis of capillary burst valves in centrifugal microfluidics[C]. Micro Total Analysis Systems 2000, Enschede : Kluwer Academic Publishers, 2000: 579- 582.
  • 9BRAKKE K A. The surface evolver, Version 2. 30. http://www. susqu. edu/brakke/. January 1,2008.
  • 10王毅,常小庆.微重力环境下推进剂贮箱中三维气液平衡界面的数值模拟[J].火箭推进,2007,33(3):31-35. 被引量:5

二级参考文献16

  • 1李淑娴,吴一辉,宣明.电磁式微流体动态混合器的动力学数值模拟[J].光学精密工程,2005,13(2):127-134. 被引量:10
  • 2张鹏,左春柽,周德义.矩形微流道内流体电动效应研究[J].光学精密工程,2007,15(4):522-528. 被引量:7
  • 3[1]Collicott S H.Convergence behavior of surface evolver applied to a generic propellant management device[R].AIAA 1999-0846.
  • 4[2]Tegart J.Three-dimensional fluid interface in cylindrical containers[R].AIAA 1991-2174.
  • 5[3]Collicott S H.Ullage bubble stability in the gravity probeB helium tank[R].AIAA 1994-3026.
  • 6杨亚龙 译.表面张力推进剂贮箱在印度INSAT卫星上的应用[J].火箭推进,1989,(4):1-15.
  • 7MANDA S W,KENNETH J L,PAUL Y.A practical guide to the staggered herringbone mixer[J].Lab on a Chip,2008(8):1121-1129.
  • 8SOLEYMANI A,KOLEHMAINEN E,TUR-UNEN I.Numerical and experimental investigations of liquid mixing in T-type micromixers[J].Chemical Engineering Journal,2008,135:219-228.
  • 9SHAKHAWAT H,ANSARI M A,KWANGY-ONG KIM.Evaluation of the mixing performance of three passive micromixers[J].Chemical Engineering Journal,2009,150:492-501.
  • 10ABRAHAM D S,STEPHAN K W D,ARMAND A,et al..Chaotic mixer for microchannels[J].Science,2002,295:647-651.

共引文献16

同被引文献50

  • 1赵明丽,黄琴,张玮,李欣欣.悬臂梁阀单腔压电泵设计方法研究[J].光学精密工程,2006,14(4):607-611. 被引量:5
  • 2金良超.正交设计与多指标分析[M].北京:中国铁道出版社,1988..
  • 3PSAHTIS D,QUAKE S,YANG C H. Developing optofluidic technology through the fusion of microfluidics and optics[ J] Nature,2006,442 (7101 ) : 381-386.
  • 4WHITESIDE G M. The origins and the future of mierofluidies[ J]. Nature,2006,442(7101 ) :368-373.
  • 5NGUYEN N T. Micro-optofluidic lenses:a review[J]. Am. Institute Physics,2010,4:031501.
  • 6MONAT C,DOMACHUK P,EGGLETON B .1. Integrated optofluidics:a new river of light[J]. Nat. Photon. ,2007,1 (2) : 106-114.
  • 7LUO D B,DUAN Y X. Microplasmas for analytical applications of lab-on-a-chip[ J]. TrAC Trends in Analytical Chem. , 2012,39:254-266.
  • 8ANDERSON J R, CHIU D T, JACKMAN R J,et al.. Fabrication of topologically complex three-dimension microfluidic sys- tems in pdms by rapid prototyping[ J]. Anal. Chem. ,2000,7:1264-1268.
  • 9JAHNKE A,MAYER P. Do complex matrices modify the sorptive properties of polydimethylsiloxane(PDMS) for non-polar organic chemicals[ J]. J. Chromatography A,2010,1217 (29) :4765-4770.
  • 10李强,韩广辉,邢曼男,等.一种精确测量微量液体折射率的仪器:中国,20081301.1[P].2009-07-22.

引证文献7

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部