期刊文献+

运动模糊退化图像的双字典稀疏复原 被引量:8

Dual dictionary sparse restoration of blurred images
下载PDF
导出
摘要 为了消除图像中的运动模糊,提出了一种稀疏理论框架下的双字典稀疏复原方法,并分析了冗余字典的选取和迭代算法的实现。首先,建立了稀疏变换下的退化和复原模型,用Haar系数冗余字典将图像稀疏化,并用PCD阈值迭代算法对模糊图像进行收敛,得到复原图像。由于在有效去除复原图像的模糊的同时噪声在迭代过程中被放大并叠加在图像上,故从清晰图像库中训练了一个冗余字典进行第二次稀疏收敛来去除去模糊中被加权的噪声。实验结果表明,本文的方法对模糊退化图像有很好的复原效果,不仅有效地去除了运动模糊和噪声,并能在一定程度上保留边缘细节。最后拓展了两层稀疏优化模型,为以后在稀疏框架下的图像复原提供了新的思路。 An image restoration method based on a dual dictionary was presented under the framework of sparse theory,and the choice of overcomplete dictionaries and the implementation of iteration methods were analyzed.Firstly,the degradation and the restoration models in the sparse theory were established,then the dictionary constructed by Haar coefficients was used to sparse the blurred image and shrink the image with Parallel Coordinate Decent(PCD) iteration algorithm to obtain the elementary deblurred image,in which the blur was removed efficiently,but the noise was weighted and added.For removing the weighted noise,the secondary dictionary from an image database was trained to shrink the deblurred image and get the final result.The results shows that the proposed method can restore the motion-blurred image efficiently,remove motion blur and noise and reserve the edge detail in some extents.Finally the two-level sparse optimization model was expanded and a new idea for the image restoration was presented under the sparse framework.
出处 《光学精密工程》 EI CAS CSCD 北大核心 2011年第8期1982-1989,共8页 Optics and Precision Engineering
基金 国家自然科学基金重点项目(科学仪器专项)(No.61027002) 国家自然科学基金资助项目(No.60972100) 国家973重点基础研究发展计划资助项目(No.2009CB72400603)
关键词 图像复原 稀疏表示 冗余字典 HAAR小波 范数 迭代收缩算法 image restoration sparse representation overcomplete dictionary Haar wavelet norm iteration shrink/threshold algorithm
  • 相关文献

参考文献19

  • 1HAMAMOTO T, AIZAWA K. A computational image sensor with adaptive pixel based integration time[J]. IEEE Journal of Solid-State Circuits, 2001, 36(4):580-585.
  • 2BEN-EZRA M,NAYAR S K. Motion based motion deblurring[J]. IEEE Transactions on Pattern A- nalysis and Machine Intelligence, 2004, 26 (6) : 689.
  • 3CALVETTI D, LEWIS B, REICHEL L. Restora tion of images with spatially variant blur by the GMRES method[J]. SPIE, 2000, 4116:364-374.
  • 4YUAN L,SUN J,QUAN L, et al.. Image deblur- ring with blurred/noisy image pairs[C]. Proceed- ings of ACM SIC-GRAPH,2007,26(3) :1-10.
  • 5OLSHAUSEN B A. Emergence of simple-cell re- ceptive field properties by learning a sparse code for naturalimages[J]. Nature, 1996,381 (6583):607- 609.
  • 6OLSHAUSEN B A,FIELD D J. Sparse coding with an overcomplete basis set: A strategy employed by V1[J]. Vision research, 1997, 37(23) :3311-3325.
  • 7MA J,LE DIMET F X. Deblurring from highly in- complete measurements for remote sensing[J]. Ge- oscience and Remote Sensing, IEEE Transactions on ,2009, 47(3) :792-802.
  • 8ELAD M, FIGUEIREDO M A T,MA Y. On the role of sparse and redundant representations in im- age processing[J]. IEEE, 2010,98(6) :972-982.
  • 9MALLAT S G, ZHANG Z. Matching pursuits with time-frequency dictionaries [ J ]. IEEE Transactions on Signal Processing, 1993, 41 (12) :3397-3415.
  • 10BERGEAUD F,MALLAT S. Matching pursuit of images [J]. Wavelet Analysis and Its Applica tions, 1998, 71285 300.

二级参考文献38

  • 1邵君,尹忠科,王建英,张跃飞.信号稀疏分解中过完备原子库的集合划分[J].铁道学报,2006,28(1):68-71. 被引量:17
  • 2BRONO A, OSSHAUSEN B A, FIELD D J. Emergence of simple-cell receptive field properties by learning a sparse code for natural image [J]. Nature, 1996,381:607-609.
  • 3DONOHO D L, XIAOMING H.. Combined image representation using edgelets and wavelets[J]. Wavelet Applications in Signal and Image Processing VII, in SPIE, 1999, 3813:468-476.
  • 4KREUTZ K, MURRAY J E Dictionary learning algorithms for sparse representation[J]. Neural Computation, 2003,15(2):349-396.
  • 5AHARON M, ELAD M,. BRUCKSTEIN A M.. The K-SVD: An algorithm for designing of overcomplete dictionaries for sparse representation[J]. IEEE Transactions on Signal Processing, 2006,54(11):4311-4322.
  • 6BRYT O, ELAD M. Compression of facial images using the K-SVD algorithm[J]. Journal of Visual Communication and Image Representation, 2008,19(4):270-283.
  • 7MAIRAL J, ELAD M, SAPIRO G. Sparse representation for color image restoration[J]. IEEE Transactions on Image Processing, 2008,17(1):53-69.
  • 8DONOHO D L, JOHNSTONE I M. Ideal spatial adaptation via wavelet shrinkage[J]. Biometrika, 1994,81:425- 455.
  • 9ROMBERG J K, CHOI H, BARANIUK R.G. Bayesian tree-structured image modeling using wavelet domain hidden markov models[J]. IEEE Transactions on Image Processing, 2001,10(7):1056-1068.
  • 10PORTILLA J, STRELA V. Image denoising using scale mixtures of gaussians in the wavelet domain[J]. IEEE Transactions on Image Processing, 2003,12(11):1338- 1351.

共引文献62

同被引文献73

  • 1仲伟波,宁书年,金声震.一种基于NAS-RIF的SST图像盲恢复新方法[J].中国矿业大学学报,2006,35(5):679-683. 被引量:2
  • 2KUNDUR D. Blind deconvolution of still images u sing recursive inverse filtering [D]. M. A. Sc. the sis, University of Toronto, Department of Electri cal and Computer Engineering, 1995.
  • 3YU-LI Y, KAVEH M. A regularization approach to ioint blur identification and image restoration [C]. IEEE Transactions on Image Processing,1996, 5(3): 416-428.
  • 4REGINALD L L, JAN B, DICK E B. Regularized iterative image restoration with ringing reduction [C]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1988, 36 (12): 1874- 1888.
  • 5RAFAEL C. G, RICHARD E W. Digital Image Processing[M]. 3rd ed. Prentice Hall, 2007.
  • 6BANHAM M R, KATSAGGELOS A K. Digital image restoration [C]. IEEE Signal Processing Magazine, 1997, 14(2): 24-41.
  • 7BUGEAU A, BERTALMIO M, CASELLES V, et al.. A comprehensive framework for image inpaint- ing [J]. IEEE Transactions on Image Processing, 2010, 19(10): 2634-2645.
  • 8BERTALMIO M, VESE L, SAPIRO G, et al.. Simultaneous structure and texture inpainting [J]. IEEE Transactions on Image Processing, 2003, 12(8): 882-889.
  • 9DONG B, HUI J, LI J, etal.. Wavelet frame based blind image inpainting [J]. Applied and Computa- tional Harmonic Analysis, 2012, 32(2):268-279.
  • 10XU Z B, SUN J. Image inpainting by patch propaga- tion using patch sparsity [J] . IEEE Transactions on Image Processing, 2010, 19(5): 1153-1165.

引证文献8

二级引证文献73

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部