摘要
针对壳管式换热器传统设计方法繁杂且结果又不能满足最佳经济费用的缺点,引入遗传算法对壳管式换热器进行设计。建立了相应的数学模型并以设备总费用为目标函数,对换热器进行优化设计。利用遗传算法智能及多点搜索等特性,不断地迭代优化变量,在优化变量值和约束条件范围内,得到最小目标函数的设计结果。采用了2个实际算例进行测试,结果显示在满足换热性能的前提下,优化后总费用都有降低,降幅分别为18.2%,7.98%。
Genetic algorithm(GA) is used for the optimal design of shell-and-tube heat exchangers due to the fact that traditional designs for shell-and-tube heat exchangers are complicated and uneconomical.To optimize the design of heat exchangers,mathematical models are established and the total costs are used as the objective function.Taking advantage of GA's intelligent and multi-searching characteristics,researchers continuously iterate optimization variables and then obtain the minimum objective function of the design results within the optimal variable values and constraints.Two practical heat exchangers are used to test the research results.The Optimization results show that the optimized total costs have decreased by 18.2% and 7.98% respectively,which can also satisfy the heat transfer performance.Moreover,the results show that the design based on GA for shell-and-tube heat exchangers can significantly improve the economic efficiency of heat exchangers and thus can be applied to engineering practice.
出处
《重庆大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2011年第8期97-102,共6页
Journal of Chongqing University
基金
重庆市建委科技计划项目(城科字2009第28号)
重庆大学'211工程'三期创新人才培养建设计划研究生开放实验室项目
关键词
遗传算法
优化
费用
壳管式换热器
genetic algorithms
optimization
costs
shell-and-tube heat exchangers