期刊文献+

结合用户长期兴趣和近期兴趣的个性化推荐模型

The Personalization Recommendation Model of Combining The User Long and Current Interest
下载PDF
导出
摘要 随着信息高速公路的发展和普及,人们被包围在信息的汪洋大海之中。因特网上的信息资源呈指数膨胀,是海量的信息源,其信息组织具有异构的、多元的、分布的等多种特性。因而,能为用户提供有效信息推荐、帮助用户找到所需的有价值信息的个性化推荐系统在Web信息检索领域获得了广泛关注,并且在实际的个性化服务系统中也得到了广泛应用,该文对个性化服务推荐系统体系结构做了一定的研究,提出了一种能区分用户长期兴趣和近期兴趣提供信息推荐的新的个性化推荐模型。 Along with the development and popularization of the information superhighway, the people were surround in ocean infomlation. The information on the internet resources presents the index number inflation,is the letter source of the sea quantity, and the organization of its information is different,diverse and distribute. As a result, can provide the valid information recommendation for the users, help the user find out need of have the characteristic recommendation system of be worth the information to acquire the extensive concern in the Web information index fields, and also got the extensive application in personalize information service system. This paper aims at the key techniques, such as the recommendation calculate way design within characteristic recommendation system and the recommendation system system structure, carrying on the more thorough and beneficial quest and researches.
作者 陈华月 CHEN Hua-yue (Computer Institute, China West Normao Universty, Nanchong 637100, China)
出处 《电脑知识与技术》 2011年第8期5396-5397,共2页 Computer Knowledge and Technology
基金 西华师范大学校青年基金项目(10A007)
关键词 个性化推荐 加权关联规则 用户近期兴趣 用户长期兴趣 personalization recommendation weighted association user current interest user long interest
  • 相关文献

参考文献5

二级参考文献62

  • 1Brccsc J, Hcchcrman D, Kadic C. Empirical analysis of predictive algorithms for collaborative filtering. In: Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence (UAI'98). 1998.43~52.
  • 2Goldberg D, Nichols D, Oki BM, Terry D. Using collaborative filtering to weave an information tapestry. Communications of the ACM, 1992,35(12):61~70.
  • 3Resnick P, lacovou N, Suchak M, Bergstrom P, Riedl J. Grouplens: An open architecture for collaborative filtering of netnews. In:Proceedings of the ACM CSCW'94 Conference on Computer-Supported Cooperative Work. 1994. 175~186.
  • 4Shardanand U, Mats P. Social information filtering: Algorithms for automating "Word of Mouth". In: Proceedings of the ACM CHI'95 Conference on Human Factors in Computing Systems. 1995. 210~217.
  • 5Hill W, Stead L, Rosenstein M, Furnas G. Recommending and evaluating choices in a virtual community of use. In: Proceedings of the CHI'95. 1995. 194~201.
  • 6Sarwar B, Karypis G, Konstan J, Riedl J. Item-Based collaborative filtering recommendation algorithms. In: Proceedings of the 10th International World Wide Web Conference. 2001. 285~295.
  • 7Chickering D, Hecherman D. Efficient approximations for the marginal likelihood of Bayesian networks with hidden variables.Machine Learning, 1997,29(2/3): 181~212.
  • 8Dempster A, Laird N, Rubin D. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, 1977,B39:1~38.
  • 9Thiesson B, Meek C, Chickering D, Heckerman D. Learning mixture of DAG models. Technical Report, MSR-TR-97-30, Redmond:Microsoft Research, 1997.
  • 10Sarwar B, Karypis G, Konstan J, Riedl J. Analysis of recommendation algorithms for E-commerce. In: ACM Conference on Electronic Commerce. 2000. 158~167.

共引文献1050

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部