期刊文献+

多时滞线性系统的控制参数优化方法 被引量:3

Control parameterization method of linear systems with multiple time-delays
下载PDF
导出
摘要 采用控制参数化方法研究具有连续状态不等式约束和多重状态及控制时滞的线性系统优化控制问题.通过把时滞系统动态模型中的控制量表示成关于时间的分段常数函数,把每个控制参数看作决策变量,将多时滞系统的控制问题转化为数学规划问题.推导出在连续状态不等式约束条件下的目标函数和约束函数对于待求参数的梯度公式,并用序列二次规划算法求出其最优控制量.最后,将该优化算法应用于湿法炼锌净化过程中.仿真结果表明,锌粉的添加量可以有效地减少,从而避免了资源的浪费. This paper studies the optimal control method using the control parameterization for a class of optimal control problems involving linear systems subject to continuous state inequality constraints where both the state and the control are allowed to have different time delays. The control of the dynamic system is approximated by a piecewise constant function whose magnitudes are taken as decision vectors. Then, formulae are derived for computing the gradients of the cost and constraint functions. On this basis, a computational method for finding the optimal control is obtained by using the sequential quadratic programming(SQP) algorithm. This computational method is applied to the purification process of zinc hydrometallurgy. The numerical simulation shows that the amount of zinc powder added can be decreased significantly so that the wastage of resources is avoided.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2011年第8期1099-1104,共6页 Control Theory & Applications
基金 国家自然科学基金资助项目(61074001 61074117) 湖南省自然科学基金资助项目(07JJ6138) 中央高校基本科研业务费专项资金资助项目(2010QZZD016) 中南大学研究生教育创新工程资助项目(2011ssxt225)
关键词 时滞系统 多重状态和控制时滞 控制参数化 序列二次规划算法 time delayed system multiple state and control delays control parameterization sequential quadratic programming algorithm
  • 相关文献

参考文献15

  • 1ARIMOTO S, KAWAMURA S, MIYAZAKI E Bettering operation of robotics by learning[J]. Journal of Robotic System, 1984, 12(2): 123 - 140.
  • 2BIEGLER L T, GROSSMANN I E. Retrospective on optimization[J] Computers and Chemical Engineering, 2004, 28(8): 1169 - 1192.
  • 3CHACHUAT B, MITSOS A, BARTON P I. Optimal design and steady-state operation of micro power generation employing fuel cells[J]. Chemical Engineering Science, 2005, 60(16): 4535 - 4556.
  • 4MICHAEl B, JESUS R G. Optimal control for linear systems with multiple time delays in control input[J]. IEEE Transactions on Automatic Control, 2006, 51(1): 91 -96.
  • 5TEO K L, GOH C J, WONG K H. A Unified Computational Approach to Optimal Control Problems[M]. New York: Longman Scientific and Technical, 1991.
  • 6LUUS R. Optimal control by dynamic programming using accessible grid points and region contraction[J]. Hungarian Journal of Industrial Chemistry, 1989, 17(4): 523- 543.
  • 7BIEGLER L T. Solution of dynamic optimization problems by successive quadratic programming and orthogonal collocation[J]. Computers and Chemical Engineering, 1984, 8(3): 243 - 248.
  • 8RAJESH J, GUPTA K, KUSUMAKAR H K, et al. Dynamic optimization of chemical processes using ant colony framework[J]. Computers and Chemical Engineering, 2001, 25(6): 583 - 595.
  • 9TEO K L, REHBOCK V, JENNINGS L S. A new computational algorithm for functional inequality constrained optimization problems[J].Automatica, 1993, 29(3): 789- 792.
  • 10TEO K L, LEE W R, JENNINGS L S, et al. Numerical solution of an optimal control problem with variable time points in the objective function[J]. ANZIAM Journal, 2002, 43(4): 463 - 478.

共引文献2

同被引文献17

引证文献3

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部