期刊文献+

基于混合近似模型的汽车正面碰撞耐撞性优化设计 被引量:12

Design Optimization on Crashworthiness of Vehicle Front Impact Based on Hybrid Approximate Model
下载PDF
导出
摘要 以汽车前部结构主要零件的厚度为变量,采用拉丁超立方试验设计方法生成100个汽车正面碰撞有限元仿真模型样本数据并进行计算,对计算结果应用Kriging模型、最小二乘响应面模型、径向基函数模型构建前部结构质量、B柱加速度最大值和前部结构最大吸能相对于各部件厚度的三种近似模型。以B柱加速度最大值为目标,约束前部结构最大吸能、前部结构零件质量及各零件厚度,利用模拟退火算法和三种空间密集撒点优化搜索方法,最终得到一组最优的前部零件厚度组合,使得B柱加速度最大值最小。研究表明,该方法计算精度和效率较好地满足了耐撞性工程设计的需求。 The thicknesses of vehicle front parts were defined as variables,and 100 points of vehicle front crash finite element models were sampled by the Latin hypercube design of experimental method.The Kriging model,LSR model and RBF model were then applied to construct the approximate models of the weight of front structure,the maximal acceleration of B pillar and the maximal absorbed energy of front structure according to the FEM simulation results.In the optimization of maximal acceleration of B pillar,the weight of front structure,the maximal absorbed energy of front structure and the thickness of vehicle front parts were constrained.Then,an ASA algorithm and searching the best result in a large number of samples in three spaces were adopted to minimum the maximal acceleration of B pillar and find an optimal thickness of the front parts.The study shows that the precision and efficiency of this method is good and can meet the crashworthiness engineering requirements.
出处 《中国机械工程》 EI CAS CSCD 北大核心 2011年第17期2136-2141,共6页 China Mechanical Engineering
基金 汽车车身先进设计制造国家重点实验室自主研究课题(60870002) 教育部长江学者与创新团队发展计划资助项目(531105050037)
关键词 耐撞性 KRIGING模型 最小二乘响应面模型 径向基函数模型 拉丁超立方 自适应模拟退火算法 crashworthiness Kriging model least squares regression(LSR) model radial basis function(RBF) model Latin hypercube adaptive simulated annealing(ASA)
  • 相关文献

参考文献10

  • 1Hong Z H. Finite Element Procedures for Contact -- impact Problems [M]. Cambridge: Oxford Uni- versity Press, 1993.
  • 2Myers R H, Montgomery D C. Response Surface Methodology: Process and Product Optimization Using Designed Experiments [M]. Toronto: John Wiley & Sons, 2002.
  • 3Chen V C P, Tsui K L, Barton R R,et al. A Re view on Design, Modeling and Applications of Computer Experiments[J]. IIE Transactions, 2006,38: 273-291.
  • 4Shan S, Wang G G. Space Exploration and Global Optimization for Computationally Intensive Design Problems: a Rough Set Based Approaeh[J]. Struc- tural Multidisciplinary Optimization, 2004,28 : 427- 441.
  • 5Gu J, Li G Y, Dong Z. Hybrid and Adaptive Meta- model Based Global Optimization[C]//Proceedings of the ASME 2009 International Design Engineering Technical Conferences & Computers and Informa- tion in Engineering Conference, IDETC/CIE 2009. San Diego, California, 2009 : DETC2009- 87121.
  • 6张崎,李兴斯.基于Kriging模型的结构可靠性分析[J].计算力学学报,2006,23(2):175-179. 被引量:45
  • 7丁彦闯,兆文忠.基于Kriging模型的焊接构架抗疲劳优化设计[J].大连交通大学学报,2008,29(2):7-11. 被引量:9
  • 8Fang H B, Horstemeyer M F. Global Response Ap- proximation with Radial Basis Functions[J]. Engi- neering Optimization, 2006,38(4) :407-424.
  • 9方开泰.均匀试验设计的理论、方法和应用——历史回顾[J].数理统计与管理,2004,23(3):69-80. 被引量:161
  • 10谢延敏,于沪平,陈军,阮雪榆.基于Kriging模型的可靠度计算[J].上海交通大学学报,2007,41(2):177-180. 被引量:41

二级参考文献27

  • 1杜德文,马淑珍,陈永良.地质统计学方法综述[J].世界地质,1995,14(4):79-84. 被引量:23
  • 2刘克龙,姚卫星,穆雪峰.基于Kriging代理模型的结构形状优化方法研究[J].计算力学学报,2006,23(3):344-347. 被引量:34
  • 3张成成,姚卫星.基于响应面的结构抗疲劳优化设计方法[J].南京航空航天大学学报,2007,39(1):37-40. 被引量:11
  • 4MATHERTON.Principles of geo-statistics[J].Economic Geology,1963,58:1246-1266.
  • 5GIUNTA A A,WATSON L T.A comparison of approximation modeling techniques:polynomial vs.Interpolating models[R].AIAA-98-4758.
  • 6SIMPSON T W.Comparison of response surface and kriging models in the multidisciplinary design of an aerospike nozzle[R].NASA/CR-1998-206935,ICASE Report No.98-16.
  • 7LUCIFREDI A,MAZZIERI C,ROSSI M.Applica-tion of multi-regressive linear models,Dynamic kriging models and neural network models to predictive maintenance of hydroelectric power systems[J].Mechanical Systems and Signal Processing,2000,14(3):471-494.
  • 8COSTA J P,PRONZATO L,THIERRY E.A com-parison between kriging and radial basis function networks for nonlinear prediction[A].Dans Proc.NSIP'99[C].Antalya,June 1999.
  • 9WELCH W J,BUCK R J,SACKS J.Predicting and computer experiments[J].Technometrics,1992,34(1):15-25.
  • 10WELCH W J,MITCHELL T J,[KG*8]WYNN H P.[KG*8]De-sign and analysis of computer experiments[J].Statistics Science,1989,4(4):409-435.

共引文献241

同被引文献100

引证文献12

二级引证文献60

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部